login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336607
Numbers of the form x^3 + x^2*y + x*y^2 + y^3, where x and y are positive integers.
3
4, 15, 32, 40, 65, 85, 108, 120, 156, 175, 203, 256, 259, 272, 320, 369, 400, 405, 477, 500, 520, 580, 585, 671, 680, 715, 803, 820, 864, 888, 935, 960, 1080, 1105, 1111, 1157, 1248, 1261, 1372, 1400, 1417, 1464, 1484, 1624, 1625, 1695, 1755, 1820, 1875, 1885
OFFSET
1,1
COMMENTS
Numbers of the form (x+y)(x^2+y^2), where x and y are positive integers. - Chai Wah Wu, Aug 08 2020
No terms == 2 (mod 4). - Robert Israel, Sep 21 2020
LINKS
EXAMPLE
4=1^3+1^2*1+1*1^2+1^3, 15=1^3+1^2*2+1*2^2+2^3, 32=2^3+2^2*2+2*2^2+2^3, ...
MAPLE
N:= 10000: # for terms <= N
S:= {}:
for x from 1 while (x+1)*(x^2+1) < N do
V:= select(`<=`, map(y -> (x+y)*(x^2+y^2), {seq(i, i=1..min(x, (N-x^3)/x^2))}), N);
S:= S union V;
od:
sort(convert(S, list)); # Robert Israel, Sep 21 2020
MATHEMATICA
max = 5000; T0 = {}; xm = Ceiling[Sqrt[max]]; While[T = T0;
T0 = Table[x^3 + x^2 y + x y^2 + y^3, {x, 1, xm}, {y, x, xm}] //
Flatten // Union // Select[#, # <= max &] &; T != T0, xm = 2 xm];
T
CROSSREFS
Cf. A024614.
Sequence in context: A322740 A366659 A121914 * A321490 A270710 A322571
KEYWORD
nonn,easy
AUTHOR
César Eliud Lozada, Jul 27 2020
STATUS
approved