login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321490
Triangular table T[n,k] = (n+k)(n^2+k^2), 1 <= k <= n = 1, 2, 3, ...; read by rows.
3
4, 15, 32, 40, 65, 108, 85, 120, 175, 256, 156, 203, 272, 369, 500, 259, 320, 405, 520, 671, 864, 400, 477, 580, 715, 888, 1105, 1372, 585, 680, 803, 960, 1157, 1400, 1695, 2048, 820, 935, 1080, 1261, 1484, 1755, 2080, 2465, 2916, 1111, 1248, 1417, 1624, 1875, 2176, 2533, 2952, 3439, 4000, 1464, 1625, 1820, 2055, 2336
OFFSET
1,1
FORMULA
Diagonal: T(n,n) = 4*n^3 = A033430(n).
Column 1: T(n,1) = (n + 1)(n^2 + 1) = A053698(n) = (n^4-1)/(n-1) for n > 1.
EXAMPLE
The table starts:
Row 1: 4;
Row 2: 15, 32;
Row 3: 40, 65, 108;
Row 4: 85, 120, 175, 256;
Row 5: 156, 203, 272, 369, 500;
Row 6: 259, 320, 405, 520, 671, 864;
Row 7: 400, 477, 580, 715, 888, 1105, 1372;
Row 8: 585, 680, 803, 960, 1157, 1400, 1695, 2048;
etc.
MATHEMATICA
t[n_, k_] := (n + k) (n^2 + k^2); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 22 2018 *)
PROG
(PARI) A321490(n, k)=(n+k)*(n^2+k^2)
A321490_row(n)=vector(n, k, (n+k)*(n^2+k^2))
A321490_list(N=12)=concat(apply(A321490_row, [1..N]))
CROSSREFS
Cf. A321491 (numbers of the form T(n,k) with n > k > 0).
Cf. A321492 (numbers which can be written at least twice in this form).
Cf. A033430 (diagonal), A053698 (column 1).
Cf. A198063 (read as a square array equals T(n,k) for all n, k >= 0).
Cf. A321500 (variant of this table with additional row 0 and column 0).
Sequence in context: A366659 A121914 A336607 * A270710 A322571 A110341
KEYWORD
nonn,tabl,easy
AUTHOR
M. F. Hasler, Nov 22 2018
STATUS
approved