login
A321490
Triangular table T[n,k] = (n+k)(n^2+k^2), 1 <= k <= n = 1, 2, 3, ...; read by rows.
3
4, 15, 32, 40, 65, 108, 85, 120, 175, 256, 156, 203, 272, 369, 500, 259, 320, 405, 520, 671, 864, 400, 477, 580, 715, 888, 1105, 1372, 585, 680, 803, 960, 1157, 1400, 1695, 2048, 820, 935, 1080, 1261, 1484, 1755, 2080, 2465, 2916, 1111, 1248, 1417, 1624, 1875, 2176, 2533, 2952, 3439, 4000, 1464, 1625, 1820, 2055, 2336
OFFSET
1,1
FORMULA
Diagonal: T(n,n) = 4*n^3 = A033430(n).
Column 1: T(n,1) = (n + 1)(n^2 + 1) = A053698(n) = (n^4-1)/(n-1) for n > 1.
EXAMPLE
The table starts:
Row 1: 4;
Row 2: 15, 32;
Row 3: 40, 65, 108;
Row 4: 85, 120, 175, 256;
Row 5: 156, 203, 272, 369, 500;
Row 6: 259, 320, 405, 520, 671, 864;
Row 7: 400, 477, 580, 715, 888, 1105, 1372;
Row 8: 585, 680, 803, 960, 1157, 1400, 1695, 2048;
etc.
MATHEMATICA
t[n_, k_] := (n + k) (n^2 + k^2); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 22 2018 *)
PROG
(PARI) A321490(n, k)=(n+k)*(n^2+k^2)
A321490_row(n)=vector(n, k, (n+k)*(n^2+k^2))
A321490_list(N=12)=concat(apply(A321490_row, [1..N]))
CROSSREFS
Cf. A321491 (numbers of the form T(n,k) with n > k > 0).
Cf. A321492 (numbers which can be written at least twice in this form).
Cf. A033430 (diagonal), A053698 (column 1).
Cf. A198063 (read as a square array equals T(n,k) for all n, k >= 0).
Cf. A321500 (variant of this table with additional row 0 and column 0).
Sequence in context: A366659 A121914 A336607 * A270710 A322571 A110341
KEYWORD
nonn,tabl,easy
AUTHOR
M. F. Hasler, Nov 22 2018
STATUS
approved