login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321491
Numbers of the form (x+y)(x^2+y^2), with integers x > y > 0.
4
15, 40, 65, 85, 120, 156, 175, 203, 259, 272, 320, 369, 400, 405, 477, 520, 580, 585, 671, 680, 715, 803, 820, 888, 935, 960, 1080, 1105, 1111, 1157, 1248, 1261, 1400, 1417, 1464, 1484, 1624, 1625, 1695, 1755, 1820, 1875, 1885, 2055, 2072, 2080, 2176, 2295, 2336, 2380, 2465
OFFSET
1,1
COMMENTS
If y = 0 is allowed, this adds the cubes A000578; if x = y is allowed, this adds A033430 = numbers of the form 4*x^3. None of these variants is in the OEIS yet.
EXAMPLE
Let f(x,y) = (x+y)(x^2+y^2) = A321490(x,y), then:
a(1) = f(2,1) = 3*5 = 15,a(2) = f(3,1) = 4*10 = 40, a(3) = f(3,2) = 5*13 = 65,a(4) = f(4,1) = 5*17 = 85,a(5) = f(4,2) = 6*20 = 120, etc.
PROG
(PARI) list_A321491(L=1e4, S=[])={for(m=2, sqrtnint(L, 3), for(n=1, m-1, if(L<t=(m+n)*(m^2+n^2), next(2), S=setunion(S, [t])))); S}
CROSSREFS
Sequence in context: A223432 A044092 A044473 * A067724 A005337 A160891
KEYWORD
nonn
AUTHOR
Geoffrey B. Campbell and M. F. Hasler, Nov 22 2018
STATUS
approved