The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321492 Numbers that can be written as (x + y)(x^2 + y^2), x > y > 0, in at least two ways. 2
 12325, 98600, 117720, 146705, 206312, 263840, 332775, 378505, 400945, 500200, 651456, 687245, 734400, 741845, 773800, 788800, 799240, 941760, 1173640, 1327360, 1533195, 1540625, 1650496, 1735105, 1836680, 1943240, 2048320, 2050880, 2110720, 2217280, 2662200, 2704360, 2965685 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A321491 for numbers of the form (x+y)(x^2+y^2) = A321490(x,y) with x > y > 0. LINKS Table of n, a(n) for n=1..33. Geoffrey B. Campbell, (m+n)(m²+n²) in two different ways, LinkedIn Number Theory Group, Aug. 2018 EXAMPLE 12325 = (13+16)(13^2+16^2) = (3+22)(3^2+22^2). 98600 = (26+32)(26^2+32^2) = (6+44)(6^2+44^2). 117720 = (21+39)(21^2+39^2) = (8+46)(8^2+46^2). 146705 = (24+41)(24^2+41^2) = (14+47)(14^2+47^2). 206312 = (15+53)(15^2+53^2) = (32+42)(32^2+42^2). 263840 = (6+62)(6^2+62^2) = (33+47)(33^2+47^2). PROG (PARI) A321492_list(L=1e6)={my(S=[], T=List(), t); for(m=2, sqrtn(L, 3), while(#S&&S[1]<=m^3, S=S[^1]); for(n=1, m-1, if(L

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 17:48 EDT 2024. Contains 374459 sequences. (Running on oeis4.)