OFFSET
1,1
COMMENTS
Positive numbers m such that 5*(5 + m) is a perfect square.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From Vincenzo Librandi, Jul 08 2012: (Start)
G.f.: 5*x*(3 - x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 3/20.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/20. (End)
E.g.f.: 5*exp(x)*x*(3 + x). - Stefano Spezia, Oct 01 2023
MATHEMATICA
Select[Range[10000], IntegerQ[ Sqrt[5 (5 + # )]] &]
CoefficientList[Series[5 (3 - x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 08 2012 *)
Table[5n^2+10n, {n, 60}] (* or *) LinearRecurrence[{3, -3, 1}, {15, 40, 75}, 60] (* Harvey P. Dale, May 22 2018 *)
PROG
(PARI) a(n)=5*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
(Magma) [5*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 08 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Feb 05 2002
STATUS
approved