login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067727 a(n) = 7*n^2 + 14*n. 9
21, 56, 105, 168, 245, 336, 441, 560, 693, 840, 1001, 1176, 1365, 1568, 1785, 2016, 2261, 2520, 2793, 3080, 3381, 3696, 4025, 4368, 4725, 5096, 5481, 5880, 6293, 6720, 7161, 7616, 8085, 8568, 9065, 9576, 10101, 10640, 11193, 11760, 12341, 12936 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Positive numbers k such that 7*(7 + k) is a perfect square.
LINKS
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
G.f.: 7*x*(3-x)/(1-x)^3. - Vincenzo Librandi, Jul 08 2012
E.g.f.: 7*x*(3 + x)*exp(x). - G. C. Greubel, Sep 01 2019
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 3/28.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/28. (End)
MAPLE
seq(7*n*(n+2), n=1..45); # G. C. Greubel, Sep 01 2019
MATHEMATICA
Select[ Range[15000], IntegerQ[ Sqrt[ 7(7 + # )]] & ]
CoefficientList[Series[7*(3-x)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 08 2012 *)
7*(Range[2, 45]^2 -1) (* G. C. Greubel, Sep 01 2019 *)
LinearRecurrence[{3, -3, 1}, {21, 56, 105}, 50] (* Harvey P. Dale, Dec 07 2022 *)
PROG
(PARI) a(n)= 7*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
(Magma) [7*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 08 2012
(Sage) [7*n*(n+2) for n in (1..45)] # G. C. Greubel, Sep 01 2019
(GAP) List([1..45], n-> 7*n*(n+2)); # G. C. Greubel, Sep 01 2019
CROSSREFS
Cf. A186029.
Cf. numbers k such that k*(k + m) is a perfect square: A028560 (k=9), A067728 (k=8), A067726 (k=6), A067724 (k=5), A028347 (k=4), A067725 (k=3), A054000 (k=2), A005563 (k=1).
Sequence in context: A301607 A145719 A031963 * A254144 A165237 A271734
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Feb 05 2002
EXTENSIONS
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 07:38 EDT 2024. Contains 371782 sequences. (Running on oeis4.)