The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271734 Number of set partitions of [n] with maximal block length multiplicity equal to five. 2
 1, 0, 21, 56, 504, 3717, 29337, 190674, 1460745, 12532520, 100025926, 845104624, 7657043576, 69364078980, 657324748866, 6374275533525, 64070264089020, 653567576544498, 6979149079277683, 74951288500334708, 835338959385664426, 9373747854520238761 (list; graph; refs; listen; history; text; internal format)
 OFFSET 5,3 COMMENTS At least one block length occurs exactly 5 times, and all block lengths occur at most 5 times. LINKS Alois P. Heinz, Table of n, a(n) for n = 5..603 Wikipedia, Partition of a set MAPLE with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i\$j) *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i)))) end: a:= n-> b(n\$2, 5)-b(n\$2, 4): seq(a(n), n=5..30); MATHEMATICA multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]]; a[n_] := b[n, n, 5] - b[n, n, 4]; Table[a[n], {n, 5, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *) CROSSREFS Column k=5 of A271423. Sequence in context: A067727 A254144 A165237 * A189004 A183310 A280884 Adjacent sequences: A271731 A271732 A271733 * A271735 A271736 A271737 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 02:40 EDT 2024. Contains 372758 sequences. (Running on oeis4.)