login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271733
Number of set partitions of [n] with maximal block length multiplicity equal to four.
2
1, 0, 15, 35, 385, 2331, 13335, 88110, 629200, 4811235, 35992957, 276332420, 2325570065, 20036259075, 171879027000, 1583318184855, 14476456463826, 139849724906591, 1347082690705367, 13909222770509990, 144001190692525628, 1519193757875044900
OFFSET
4,3
COMMENTS
At least one block length occurs exactly 4 times, and all block lengths occur at most 4 times.
LINKS
MAPLE
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
a:= n-> b(n$2, 4)-b(n$2, 3):
seq(a(n), n=4..30);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]];
a[n_] := b[n, n, 4] - b[n, n, 3];
Table[a[n], {n, 4, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A271423.
Sequence in context: A219689 A074891 A328213 * A280883 A306325 A241282
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 13 2016
STATUS
approved