login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271731
Number of set partitions of [n] with maximal block length multiplicity equal to two.
2
1, 0, 9, 25, 70, 406, 2093, 10935, 41961, 267751, 1745040, 9744384, 60271016, 369277000, 2981920373, 19297914599, 136978951579, 1039245386419, 8924928983999, 65392069094065, 539711448752906, 4489189106832134, 39604974257078180, 404561197077466250
OFFSET
2,3
COMMENTS
At least one block length occurs exactly 2 times, and all block lengths occur at most 2 times.
LINKS
MAPLE
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
a:= n-> b(n$2, 2)-b(n$2, 1):
seq(a(n), n=2..30);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]];
a[n_] := b[n, n, 2] - b[n, n, 1];
Table[a[n], {n, 2, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A271423.
Sequence in context: A147318 A146589 A146866 * A126363 A036836 A125997
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 13 2016
STATUS
approved