login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067728
a(n) = 2*n^2 + 8*n.
19
10, 24, 42, 64, 90, 120, 154, 192, 234, 280, 330, 384, 442, 504, 570, 640, 714, 792, 874, 960, 1050, 1144, 1242, 1344, 1450, 1560, 1674, 1792, 1914, 2040, 2170, 2304, 2442, 2584, 2730, 2880, 3034, 3192, 3354, 3520, 3690, 3864, 4042, 4224, 4410, 4600, 4794
OFFSET
1,1
COMMENTS
Positive numbers k such that 8*(8 + k) is a perfect square.
FORMULA
a(n+1) = 2*n*n + 12*n + 10. - Frank Ellermann
a(n) = Sum_{k=0..n} Sum_{j=4..n} (j - k), n >= 4. - Zerinvary Lajos, May 11 2007
From Vincenzo Librandi, Jul 08 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(5-3*x)/(1-x)^3. (End)
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 25/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7/96. (End)
E.g.f.: 2*exp(x)*x*(5 + x). - Stefano Spezia, Oct 01 2023
MATHEMATICA
Select[ Range[10000], IntegerQ[ Sqrt[ 8(8 + # )]] & ]
CoefficientList[Series[2*(5-3*x)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 08 2012 *)
PROG
(PARI) a(n)=2*n*(n+4) \\ Charles R Greathouse IV, Dec 07 2011
(Magma) [2*n*(n+4): n in [1..50]] // Vincenzo Librandi, Jul 08 2012
(Python)
def a(n): return (2*n + 8)*n
print([a(n) for n in range(1, 48)]) # Michael S. Branicky, Oct 24 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Feb 05 2002
STATUS
approved