OFFSET
1,1
COMMENTS
Positive numbers k such that 8*(8 + k) is a perfect square.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n+1) = 2*n*n + 12*n + 10. - Frank Ellermann
a(n) = Sum_{k=0..n} Sum_{j=4..n} (j - k), n >= 4. - Zerinvary Lajos, May 11 2007
From Vincenzo Librandi, Jul 08 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(5-3*x)/(1-x)^3. (End)
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 25/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7/96. (End)
E.g.f.: 2*exp(x)*x*(5 + x). - Stefano Spezia, Oct 01 2023
MATHEMATICA
Select[ Range[10000], IntegerQ[ Sqrt[ 8(8 + # )]] & ]
CoefficientList[Series[2*(5-3*x)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 08 2012 *)
PROG
(PARI) a(n)=2*n*(n+4) \\ Charles R Greathouse IV, Dec 07 2011
(Magma) [2*n*(n+4): n in [1..50]] // Vincenzo Librandi, Jul 08 2012
(Python)
def a(n): return (2*n + 8)*n
print([a(n) for n in range(1, 48)]) # Michael S. Branicky, Oct 24 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Feb 05 2002
STATUS
approved