login
A103573
a(n) is the least integer such that floor(a(n)^(1/2)-a(n)^(1/3)) = n.
0
0, 10, 24, 42, 64, 90, 120, 153, 189, 229, 272, 318, 368, 420, 476, 535, 597, 662, 729, 800, 874, 951, 1031, 1114, 1199, 1288, 1379, 1473, 1570, 1670, 1773, 1879, 1987, 2098, 2212, 2329, 2449, 2571, 2696, 2824, 2954, 3087, 3223, 3362, 3504, 3648, 3795
OFFSET
0,2
EXAMPLE
0^(1/2) - 0^(1/3) = 0.
10^(1/2) - 10^(1/3) = 1.00784...
24^(1/2) - 24^(1/3) = 2.01448...
42^(1/2) - 42^(1/3) = 3.00471...
MATHEMATICA
f[n_] := Block[{k = 0}, While[ Floor[k^(1/2) - k^(1/3)] < n, k++ ]; k]; Table[ f[n], {n, 0, 46}] (* Robert G. Wilson v, Mar 23 2005 *)
CROSSREFS
Sequence in context: A101156 A267431 A162817 * A067728 A352283 A058504
KEYWORD
nonn
AUTHOR
Ray G. Opao, Mar 22 2005
EXTENSIONS
a(27) and further terms from Robert G. Wilson v, Mar 23 2005
STATUS
approved