login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212331
a(n) = 5*n*(n+5)/2.
7
0, 15, 35, 60, 90, 125, 165, 210, 260, 315, 375, 440, 510, 585, 665, 750, 840, 935, 1035, 1140, 1250, 1365, 1485, 1610, 1740, 1875, 2015, 2160, 2310, 2465, 2625, 2790, 2960, 3135, 3315, 3500, 3690, 3885, 4085, 4290, 4500, 4715, 4935, 5160, 5390, 5625, 5865
OFFSET
0,2
COMMENTS
Numbers of the form n*t(n+5,h)-(n+5)*t(n,h), where t(k,h) = k*(k+2*h+1)/2 for any h. Likewise:
A000217(n) = n*t(n+1,h)-(n+1)*t(n,h),
A005563(n) = n*t(n+2,h)-(n+2)*t(n,h),
A140091(n) = n*t(n+3,h)-(n+3)*t(n,h),
A067728(n) = n*t(n+4,h)-(n+4)*t(n,h) (n>0),
A140681(n) = n*t(n+6,h)-(n+6)*t(n,h).
This is the case r=7 in the formula:
u(r,n) = (P(r, P(n+r, r+6)) - P(n+r, P(r, r+6))) / ((r+5)*(r+6)/2)^2, where P(s, m) is the m-th s-gonal number.
Also, a(k) is a square for k = (5/2)*(A078986(n)-1).
Sum of reciprocals of a(n), for n>0: 137/750.
Also, numbers h such that 8*h/5+25 is a square.
The table given below as example gives the dimensions D(h, n) of the irreducible SU(3) multiplets (h,n). See the triangle A098737 with offset 0, and the comments there, also with a link and the Coleman reference. - Wolfdieter Lang, Dec 18 2020
FORMULA
G.f.: 5*x*(3-2*x)/(1-x)^3.
a(n) = a(-n-5) = 5*A055998(n).
E.g.f.: (5/2)*x*(x + 6)*exp(x). - G. C. Greubel, Jul 21 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/25 - 47/750. - Amiram Eldar, Feb 26 2022
EXAMPLE
From the first and second comment derives the following table:
----------------------------------------------------------------
h \ n | 0 1 2 3 4 5 6 7 8 9 10
------|---------------------------------------------------------
0 | 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... (A000217)
1 | 0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, ... (A005563)
2 | 0, 6, 15, 27, 42, 60, 81, 105, 132, 162, 195, ... (A140091)
3 | 0, 10, 24, 42, 64, 90, 120, 154, 192, 234, 280, ... (A067728)
4 | 0, 15, 35, 60, 90, 125, 165, 210, 260, 315, 375, ... (A212331)
5 | 0, 21, 48, 81, 120, 165, 216, 273, 336, 405, 480, ... (A140681)
6 | 0, 28, 63, 105, 154, 210, 273, 343, 420, 504, 595, ...
7 | 0, 36, 80, 132, 192, 260, 336, 420, 512, 612, 720, ...
8 | 0, 45, 99, 162, 234, 315, 405, 504, 612, 729, 855, ...
9 | 0, 55, 120, 195, 280, 375, 480, 595, 720, 855, 1000, ...
with the formula n*(h+1)*(h+n+1)/2. See also A098737.
MATHEMATICA
Table[(5/2) n (n + 5), {n, 0, 46}]
PROG
(Magma) [5*n*(n+5)/2: n in [0..46]];
(PARI) a(n)=5*n*(n+5)/2 \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, May 30 2012
EXTENSIONS
Extended by Bruno Berselli, Aug 05 2015
STATUS
approved