login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212334
Number of words, either empty or beginning with the first letter of the 4-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.
15
1, 1, 9, 163, 3593, 87501, 2266155, 61211095, 1704838665, 48605519665, 1411522695509, 41606511550803, 1241591466423467, 37435593955828069, 1138713916992923679, 34901292375152457663, 1076813644170756916745, 33416749492077957930105, 1042376218505671236116985
OFFSET
0,3
COMMENTS
Also the number of (4*n-1)-step walks on 4-dimensional cubic lattice from (1,0,0,0) to (n,n,n,n) with positive unit steps in all dimensions such that the absolute difference of the dimension indices used in consecutive steps is <= 1.
It appears that for primes p >= 5, a(p) == 1 (mod p^5). Cf. A352655. - Peter Bala, Dec 12 2021
Conjecture: for r >= 2, and all primes p >= 5, a(p^r) == a(p^(r-1)) (mod p^(3*r+3)). - Peter Bala, Oct 13 2022
LINKS
FORMULA
a(n) ~ (1 + sqrt(2))^(4*n-1) / (2^(7/4) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 13 2013, simplified Apr 06 2022
From Peter Bala, Apr 17 2022: (Start)
a(n) = (1/12)*(A005259(n) + 7*A005259(n-1)) for n >= 1.
The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k.
a(n) = (1/3)*Sum_{k = 0..n} binomial(n,k)^2*binomial(n + k,k)^2*(2*n^2 - 3*k*n + 2*k^2)/(n + k)^2.
(24*n^3 - 102*n^2 + 148*n - 73)*n^3*a(n) = 4*(204*n^6 - 1173*n^5 + 2668*n^4 - 3065*n^3 + 1905*n^2 - 634*n + 86)*a(n-1) - (24*n^3 - 30*n^2 + 16*n-3)*(n - 2)^3*a(n-2) with a(0) = a(1) = 1. (End)
a(n) = Sum_{k=0..n-1} binomial(n,k)*binomial(n-1,k)*binomial(n+k-1,k)^2 for n>=1. - Peter Bala, Mar 22 2023
MAPLE
a:= proc(n) option remember; `if`(n<3, [1, 1, 9][n+1],
((26682*n^4 -102687*n^3 +149385*n^2 -109413*n +31101) *a(n-1)
+(-161058*n^4 +1392915*n^3 -4418826*n^2 +6030348*n -2931516) *a(n-2)
+(4718*n^4 -47957*n^3 +176841*n^2 -275751*n +148365) *a(n-3)) /
(n^3 *(646*n -1057)))
end:
seq(a(n), n=0..30);
MATHEMATICA
a[n_] := a[n] = If[n < 3, {1, 1, 9}[[n + 1]], ((26682 n^4 - 102687 n^3 + 149385 n^2 - 109413 n + 31101) a[n-1] + (-161058 n^4 + 1392915 n^3 - 4418826 n^2 + 6030348 n - 2931516)a[n-2] + (4718 n^4 - 47957 n^3 + 176841 n^2 - 275751 n + 148365)a[n-3])/(n^3 (646 n - 1057))];
a /@ Range[0, 30] (* Jean-François Alcover, May 14 2020, after Maple *)
CROSSREFS
Column k = 4 of A208673.
Sequence in context: A297436 A041147 A041144 * A377330 A354900 A354892
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 07 2012
STATUS
approved