login
A377330
E.g.f. satisfies A(x) = 1 + A(x)^2 * (exp(x*A(x)^2) - 1).
1
1, 1, 9, 163, 4537, 171451, 8206517, 476071275, 32469361617, 2546397256651, 225784275815485, 22336278201427675, 2439097416667718297, 291422424985108052091, 37817207428965579915333, 5296739332085114983427083, 796419825874139713780172449, 127955324543685857975407200235
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (2*n+2*k)!/(2*n+k+1)! * Stirling2(n,k).
PROG
(PARI) a(n) = sum(k=0, n, (2*n+2*k)!/(2*n+k+1)!*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 25 2024
STATUS
approved