login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212337 Expansion of 1/(1-4*x+3*x^2)^2. 2
1, 8, 42, 184, 731, 2736, 9844, 34448, 118101, 398584, 1328606, 4384392, 14348911, 46633952, 150663528, 484275616, 1549681961, 4939611240, 15690529810, 49686677720, 156905298051, 494251688848, 1553362450652, 4871909504304, 15251194969981, 47659984281176 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Partial sums of A014915. - Bruno Berselli, Oct 26 2012
Convolution of A003462(n+1) with itself. - Philippe Deléham, Mar 07 2014
LINKS
S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012. See (16).
Sergey Kitaev, Jeffrey Remmel, Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)
FORMULA
G.f.: 1/((1-x)^2*(1-3*x)^2). - Bruno Berselli, May 11 2012
a(n) = 1+n*(1+9*3^n)/4. - Bruno Berselli, May 11 2012
EXAMPLE
a(0) = 1*1 = 1;
a(1) = 1*4 + 4*1 = 8;
a(2) = 1*13 + 4*4 + 13*1 = 42;
a(3) = 1*40 + 4*13 + 13*4 + 40*1 = 184;
a(4) = 1*121 + 4*40 + 13*13 + 40*4 + 121*1 = 731; etc. - Philippe Deléham, Mar 07 2014
MATHEMATICA
Table[1 + n ((1 + 9 3^n)/4), {n, 0, 25}] (* Bruno Berselli, May 11 2012 *)
CoefficientList[Series[1/(1-4x+3x^2)^2, {x, 0, 30}], x] (* or *) LinearRecurrence[ {8, -22, 24, -9}, {1, 8, 42, 184}, 30] (* Harvey P. Dale, Jun 14 2020 *)
PROG
(Magma) m:=26; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^2*(1-3*x)^2))); // Bruno Berselli, May 11 2012
(PARI) Vec(1/(1-4*x+3*x^2)^2 + O(x^100)) \\ Altug Alkan, Nov 01 2015
CROSSREFS
Sequence in context: A229729 A055082 A266940 * A289031 A093381 A097788
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 09 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 14:16 EST 2024. Contains 370304 sequences. (Running on oeis4.)