login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212337
Expansion of 1/(1-4*x+3*x^2)^2.
4
1, 8, 42, 184, 731, 2736, 9844, 34448, 118101, 398584, 1328606, 4384392, 14348911, 46633952, 150663528, 484275616, 1549681961, 4939611240, 15690529810, 49686677720, 156905298051, 494251688848, 1553362450652, 4871909504304, 15251194969981, 47659984281176
OFFSET
0,2
COMMENTS
Partial sums of A014915. - Bruno Berselli, Oct 26 2012
Convolution of A003462(n+1) with itself. - Philippe Deléham, Mar 07 2014
LINKS
Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See p. 16.
S. Kitaev, J. Remmel, and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012. See (16).
Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)
FORMULA
From Bruno Berselli, May 11 2012: (Start)
G.f.: 1/((1-x)^2*(1-3*x)^2).
a(n) = 1+n*(1+9*3^n)/4. (End)
E.g.f.: exp(x)*(4 + x + 27*exp(2*x)*x)/4. - Stefano Spezia, May 14 2024
EXAMPLE
a(0) = 1*1 = 1;
a(1) = 1*4 + 4*1 = 8;
a(2) = 1*13 + 4*4 + 13*1 = 42;
a(3) = 1*40 + 4*13 + 13*4 + 40*1 = 184;
a(4) = 1*121 + 4*40 + 13*13 + 40*4 + 121*1 = 731; etc. - Philippe Deléham, Mar 07 2014
MATHEMATICA
Table[1 + n ((1 + 9 3^n)/4), {n, 0, 25}] (* Bruno Berselli, May 11 2012 *)
CoefficientList[Series[1/(1-4x+3x^2)^2, {x, 0, 30}], x] (* or *) LinearRecurrence[ {8, -22, 24, -9}, {1, 8, 42, 184}, 30] (* Harvey P. Dale, Jun 14 2020 *)
PROG
(Magma) m:=26; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^2*(1-3*x)^2))); // Bruno Berselli, May 11 2012
(PARI) Vec(1/(1-4*x+3*x^2)^2 + O(x^100)) \\ Altug Alkan, Nov 01 2015
CROSSREFS
Sequence in context: A229729 A055082 A266940 * A289031 A093381 A097788
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 09 2012
STATUS
approved