login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093381
Expansion of (1 - 2*x - 3*x^2 - 4*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)).
2
1, 8, 42, 186, 766, 3058, 12062, 47426, 186606, 735858, 2909182, 11528866, 45781646, 182104658, 725311902, 2891845506, 11539011886, 46070609458, 184025468222, 735329653346, 2938999333326, 11749034250258, 46975237266142
OFFSET
0,2
COMMENTS
Second binomial transform of A093380.
FORMULA
a(n) = 4/3 - 5*2^n + 2*3^n + 8*4^n/3;
a(n) = 2*A000244(n) - 5*A000079(n) + 4*A001045(2n+1).
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4), n > 3. - Harvey P. Dale, May 29 2013
MATHEMATICA
CoefficientList[Series[(1-2x-3x^2-4x^3)/((1-x)(1-2x)(1-3x)(1-4x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{10, -35, 50, -24}, {1, 8, 42, 186}, 30] (* Harvey P. Dale, May 29 2013 *)
PROG
(Magma) [4/3-5*2^n+2*3^n+8*4^n/3: n in [0..30]]; // Vincenzo Librandi, May 31 2011
CROSSREFS
Cf. A033484.
Sequence in context: A266940 A212337 A289031 * A097788 A171478 A352626
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 28 2004
STATUS
approved