login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171478
a(n) = 6*a(n-1) - 8*a(n-2) + 2 for n > 1; a(0) = 1, a(1) = 8.
2
1, 8, 42, 190, 806, 3318, 13462, 54230, 217686, 872278, 3492182, 13974870, 55911766, 223671638, 894735702, 3579041110, 14316361046, 57265837398, 229064136022, 916258116950, 3665035613526, 14660148745558, 58640607565142
OFFSET
0,2
COMMENTS
Second binomial transform of A168648.
Partial sums of A080960.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000 (* extending prior file from Vincenzo Librandi *)
FORMULA
a(n) = (10*4^n - 9*2^n + 2)/3.
G.f.: (1+x)/((1-x)*(1-2*x)*(1-4*x)).
a(0)=1, a(1)=8, a(2)=42, a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). - Harvey P. Dale, May 04 2012
a(n) = A203241(n+1) + 2^n*(2^(n+1)-1), n>0. - J. M. Bergot, Mar 21 2018
MAPLE
a:= proc(n) option remember: if n = 0 then 1 elif n = 1 then 8 elif n >= 2 then 6*procname(n-1) - 8*procname(n-2) + 2 fi; end:
seq(a(n), n = 0..25); # Muniru A Asiru, Mar 22 2018
MATHEMATICA
RecurrenceTable[{a[0]==1, a[1]==8, a[n]==6a[n-1]-8a[n-2]+2}, a, {n, 30}] (* or *) LinearRecurrence[{7, -14, 8}, {1, 8, 42}, 30] (* Harvey P. Dale, May 04 2012 *)
PROG
(PARI) {m=23; v=concat([1, 8], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]+2); v}
(Magma) [(10*4^n-9*2^n+2)/3: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
(GAP) a:=[1, 8];; for n in [3..25] do a[n]:=6*a[n-1]-8*a[n-2]+2; od; a; # Muniru A Asiru, Mar 22 2018
CROSSREFS
Cf. A168648 ((10*2^n+2*(-1)^n)/3, a(0)=1), A080960 (third binomial transform of A010685), A171472, A171473.
Sequence in context: A289031 A093381 A097788 * A352626 A276265 A249977
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Dec 09 2009
STATUS
approved