login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171476
a(n) = 6*a(n-1) - 8*a(n-2) for n > 1, a(0)=1, a(1)=6.
10
1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528
OFFSET
0,2
COMMENTS
Binomial transform of A048473; second binomial transform of A151821; third binomial transform of A010684; fourth binomial transform of A084633 without second term 0; fifth binomial transform of A168589.
Inverse binomial transform of A081625; second inverse binomial transform of A081626; third inverse binomial transform of A081627.
Partial sums of A010036.
Essentially first differences of A006095.
a(n) = A109241(n) converted from binary to decimal. - Robert Price, Jan 19 2016
a(n) is the area enclosed by a Hilbert curve with unit length segments after n iterations, when the start and end points are joined. - Jennifer Buckley, Apr 23 2024
FORMULA
a(n) = Sum_{k=1..2^n-1} k.
a(n) = 2*4^n - 2^n.
G.f.: 1/((1-2*x)*(1-4*x)).
a(n) = A006516(n+1).
a(n) = 4*a(n-1) + 2^n for n > 0, a(0)=1. - Vincenzo Librandi, Jul 17 2011
a(n) = Sum_{k=0..n} 2^(n+k). - Bruno Berselli, Aug 07 2013
a(n) = A020522(n+1)/2. - Hussam al-Homsi, Jun 06 2021
E.g.f.: exp(2*x)*(2*exp(2*x) - 1). - Stefano Spezia, Dec 10 2021
MATHEMATICA
LinearRecurrence[{6, -8}, {1, 6}, 30] (* Harvey P. Dale, Aug 02 2020 *)
PROG
(PARI) m=23; v=concat([1, 6], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v
(Magma) [2*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
CROSSREFS
Cf. A006516 (2^(n-1)*(2^n-1)), A020522 (4^n-2^n), A048473 (2*3^n-1), A151821 (powers of 2, omitting 2 itself), A010684 (repeat 1, 3), A084633 (inverse binomial transform of repeated odd numbers), A168589 ((2-3^n)*(-1)^n), A081625 (2*5^n-3^n), A081626 (2*6^n-4^n), A081627 (2*7^n-5^n), A010036 (sum of 2^n, ..., 2^(n+1)-1), A006095 (Gaussian binomial coefficient [n, 2] for q=2), A171472, A171473.
Sequence in context: A065997 A348035 A354073 * A171496 A006516 A330532
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Dec 09 2009
STATUS
approved