OFFSET
0,2
COMMENTS
a(n) has n+1 1's and n 0's. Partial sums are A109242.
a(n) = A171476(n) converted from decimal to binary. - Robert Price, Jan 19 2016
Also the binary representation of the n-th iteration of the elementary cellular automaton starting with a single ON (black) cell for Rules 206 and 238. - Robert Price, Feb 21 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
Index entries for linear recurrences with constant coefficients, signature (110,-1000)
FORMULA
a(n) = (10^(2n+1) - 10^n)/9.
a(n) = A006516(n+1) written in base 2. - Omar E. Pol, Feb 24 2008
a(n) = A138147(n+1)/10. - Omar E. Pol, Nov 08 2008
a(n) = 110*a(n-1) -1000*a(n-2), n>=2. - Vincenzo Librandi, Mar 18 2011
a(n) = A002275(n+1)*10^n. - Wesley Ivan Hurt, Jun 22 2013
E.g.f.: (1/9)*(10*exp(100*x) - exp(10*x)). - G. C. Greubel, Aug 01 2017
MAPLE
A109241 := proc(n)(10^(2*n+1)-10^n)/9 ; end proc:
seq(A109241(n), n=0..20) ; # R. J. Mathar, Mar 21 2011
MATHEMATICA
Table[(10^(2*n+1)-10^n)/9, {n, 0, 100}] (* Robert Price, Feb 21 2016 *)
CoefficientList[Series[1/((1 - 100 x) (1 - 10 x)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 22 2016 *)
PROG
(PARI) a(n)=10^(2*n+1)/9-10^n/9 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [10^(2*n+1)/9-10^n/9: n in [0..40]]; // Vincenzo Librandi, Feb 22 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 23 2005
STATUS
approved