login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109241
Expansion of 1/((1-10*x)*(1-100*x)).
8
1, 110, 11100, 1111000, 111110000, 11111100000, 1111111000000, 111111110000000, 11111111100000000, 1111111111000000000, 111111111110000000000, 11111111111100000000000, 1111111111111000000000000, 111111111111110000000000000, 11111111111111100000000000000
OFFSET
0,2
COMMENTS
a(n) has n+1 1's and n 0's. Partial sums are A109242.
a(n) = A171476(n) converted from decimal to binary. - Robert Price, Jan 19 2016
Also the binary representation of the n-th iteration of the elementary cellular automaton starting with a single ON (black) cell for Rules 206 and 238. - Robert Price, Feb 21 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
a(n) = (10^(2n+1) - 10^n)/9.
a(n) = A006516(n+1) written in base 2. - Omar E. Pol, Feb 24 2008
a(n) = A138147(n+1)/10. - Omar E. Pol, Nov 08 2008
a(n) = 110*a(n-1) -1000*a(n-2), n>=2. - Vincenzo Librandi, Mar 18 2011
a(n) = A002275(n+1)*10^n. - Wesley Ivan Hurt, Jun 22 2013
E.g.f.: (1/9)*(10*exp(100*x) - exp(10*x)). - G. C. Greubel, Aug 01 2017
MAPLE
A109241 := proc(n)(10^(2*n+1)-10^n)/9 ; end proc:
seq(A109241(n), n=0..20) ; # R. J. Mathar, Mar 21 2011
MATHEMATICA
Table[(10^(2*n+1)-10^n)/9, {n, 0, 100}] (* Robert Price, Feb 21 2016 *)
CoefficientList[Series[1/((1 - 100 x) (1 - 10 x)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 22 2016 *)
PROG
(PARI) a(n)=10^(2*n+1)/9-10^n/9 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [10^(2*n+1)/9-10^n/9: n in [0..40]]; // Vincenzo Librandi, Feb 22 2016
CROSSREFS
Sequence in context: A058935 A266975 A265320 * A090490 A267688 A211979
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 23 2005
STATUS
approved