login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171472
a(n) = 6*a(n-1) - 8*a(n-2) for n > 1; a(0) = 7, a(1) = 30.
13
7, 30, 124, 504, 2032, 8160, 32704, 130944, 524032, 2096640, 8387584, 33552384, 134213632, 536862720, 2147467264, 8589901824, 34359672832, 137438822400, 549755551744, 2199022731264, 8796091973632, 35184369991680
OFFSET
0,1
COMMENTS
Related to Reverse and Add trajectory of 22 in base 2: A061561(4*n+2) = 12*a(n).
Third binomial transform of A010729.
a(n) in base 2 is n+3 1s followed by n 0s. - Hussam al-Homsi, Oct 12 2021
FORMULA
a(n) = 8*4^n-2^n.
G.f.: (7-12*x)/((1-2*x)*(1-4*x)).
a(n) = A171499(n+1)/2. - Hussam al-Homsi, Jun 06 2021
E.g.f.: exp(2*x)*(8*exp(2*x) - 1). - Stefano Spezia, Sep 27 2023
MATHEMATICA
LinearRecurrence[{6, -8}, {7, 30}, 30] (* Harvey P. Dale, Sep 01 2016 *)
PROG
(PARI) {m=22; v=concat([7, 30], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v}
(Magma) [8*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, May 31 2011
CROSSREFS
Cf. A061561, A010729 (repeat 7, 9), A171470, A171471, A171473, A171499.
Sequence in context: A026631 A037709 A037611 * A369201 A220720 A024311
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Dec 09 2009
STATUS
approved