login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171499
a(n) = 6*a(n-1) - 8*a(n-2) for n > 1; a(0) = 3, a(1) = 14.
9
3, 14, 60, 248, 1008, 4064, 16320, 65408, 261888, 1048064, 4193280, 16775168, 67104768, 268427264, 1073725440, 4294934528, 17179803648, 68719345664, 274877644800, 1099511103488, 4398045462528, 17592183947264, 70368739983360
OFFSET
0,1
COMMENTS
Binomial transform of A171498; second binomial transform of A171497; third binomial transform of A010703.
Related to sequences A001969 and A000069, sum of each group with exponent 1. - Eric Desbiaux, Jul 24 2013
a(n) in base 2 is n+2 1s followed by n 0s. - Hussam al-Homsi, Oct 12 2021
FORMULA
a(n) = 4*4^n - 2^n = 2^n * (2^(n+2) - 1).
G.f.: (3-4*x)/((1-2*x)*(1-4*x)).
a(n) = 4*a(n-1) + 2^n for n > 0. - Vincenzo Librandi, Jul 18 2011
a(n) = A171476(n+1)/2. - Hussam al-Homsi, Jun 06 2021
E.g.f.: 4*exp(4*x) - exp(2*x). - G. C. Greubel, Aug 31 2023
MATHEMATICA
(* This program shows how A171499 arises from the Vandermonde determinant of (1, 2, 4, ..., 2^(n-1)). *)
f[j_]:= 2^j - 1; z = 15;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
d[n_]:= Product[(i-1)!, {i, n}]
Table[v[n], {n, z}] (* A203303 *)
Table[v[n+1]/v[n], {n, z}] (* A002884 *)
Table[v[n]*v[n+2]/(2*v[n+1])^2, {n, z}] (* A171499 *)
(* Clark Kimberling, Jan 02 2011 *)
LinearRecurrence[{6, -8}, {3, 14}, 30] (* Harvey P. Dale, Sep 05 2021 *)
PROG
(PARI) {m=23; v=concat([3, 14], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v}
(Magma) [4*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
(SageMath) [4^(n+1) -2^n for n in range(31)] # G. C. Greubel, Aug 31 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Dec 10 2009
STATUS
approved