login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171502
Irregular triangle T(n, k) = coefficients of p(x, n), where p(x, n) = ((1-x^(2*n))/(1-x))*p(x, n-1), p(x, 0) = 1, and p(x, 1) = (1-x^4)/(1-x), read by rows.
1
1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 1, 1, 3, 6, 10, 14, 18, 21, 23, 23, 21, 18, 14, 10, 6, 3, 1, 1, 4, 10, 20, 34, 52, 73, 96, 119, 140, 157, 168, 172, 168, 157, 140, 119, 96, 73, 52, 34, 20, 10, 4, 1
OFFSET
1,7
REFERENCES
Samuel I. Goldberg, Curvature and Homology, Dover, New York, 1998, page 144.
FORMULA
T(n, k) = coefficients of p(x, n), where p(x, n) = ((1-x^(2*n))/(1-x))*p(x, n-1), p(x, 0) = 1, and p(x, 1) = (1-x^4)/(1-x).
T(n, k) = coefficients of f(n, x), where f(n, x) = (1/(1-x)^(n-1))*Product_{j=2..n} (1 - x^(2*j)). - G. C. Greubel, Jul 18 2021
EXAMPLE
Irregular triangle begins as:
1;
1, 1, 1, 1;
1, 2, 3, 4, 4, 4, 3, 2, 1;
1, 3, 6, 10, 14, 18, 21, 23, 23, 21, 18, 14, 10, 6, 3, 1;
MATHEMATICA
p[n_, x_]:= p[n, x]= Product[1 - x^(2*j), {j, 2, n}]/(1-x)^(n-1);
T[n_]:= T[n] = CoefficientList[p[n, x], x];
Table[T[n], {n, 10}]//Flatten
PROG
(Sage)
@CachedFunction
def p(n, x): return product( 1-x^(2*j) for j in (2..n) )/(1-x)^(n-1)
def T(n): return ( p(n, x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (1..12)]) # G. C. Greubel, Jul 18 2021
CROSSREFS
Cf. A142724.
Sequence in context: A263408 A109870 A364368 * A005102 A030241 A062750
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Dec 10 2009
EXTENSIONS
Edited by G. C. Greubel, Jul 18 2021
STATUS
approved