Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jul 19 2021 02:32:58
%S 1,1,1,1,1,1,2,3,4,4,4,3,2,1,1,3,6,10,14,18,21,23,23,21,18,14,10,6,3,
%T 1,1,4,10,20,34,52,73,96,119,140,157,168,172,168,157,140,119,96,73,52,
%U 34,20,10,4,1
%N Irregular triangle T(n, k) = coefficients of p(x, n), where p(x, n) = ((1-x^(2*n))/(1-x))*p(x, n-1), p(x, 0) = 1, and p(x, 1) = (1-x^4)/(1-x), read by rows.
%D Samuel I. Goldberg, Curvature and Homology, Dover, New York, 1998, page 144.
%H G. C. Greubel, <a href="/A171502/b171502.txt">Rows n = 1..20 of the irregular triangle, flattened</a>
%H FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000059">The inversion number of a standard Young tableau as defined by Haglund and Stevens.</a>
%F T(n, k) = coefficients of p(x, n), where p(x, n) = ((1-x^(2*n))/(1-x))*p(x, n-1), p(x, 0) = 1, and p(x, 1) = (1-x^4)/(1-x).
%F T(n, k) = coefficients of f(n, x), where f(n, x) = (1/(1-x)^(n-1))*Product_{j=2..n} (1 - x^(2*j)). - _G. C. Greubel_, Jul 18 2021
%e Irregular triangle begins as:
%e 1;
%e 1, 1, 1, 1;
%e 1, 2, 3, 4, 4, 4, 3, 2, 1;
%e 1, 3, 6, 10, 14, 18, 21, 23, 23, 21, 18, 14, 10, 6, 3, 1;
%t p[n_, x_]:= p[n, x]= Product[1 - x^(2*j), {j, 2, n}]/(1-x)^(n-1);
%t T[n_]:= T[n] = CoefficientList[p[n, x], x];
%t Table[T[n], {n, 10}]//Flatten
%o (Sage)
%o @CachedFunction
%o def p(n,x): return product( 1-x^(2*j) for j in (2..n) )/(1-x)^(n-1)
%o def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
%o flatten([T(n) for n in (1..12)]) # _G. C. Greubel_, Jul 18 2021
%Y Cf. A142724.
%K nonn,tabf
%O 1,7
%A _Roger L. Bagula_, Dec 10 2009
%E Edited by _G. C. Greubel_, Jul 18 2021