login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024037 a(n) = 4^n - n. 15
1, 3, 14, 61, 252, 1019, 4090, 16377, 65528, 262135, 1048566, 4194293, 16777204, 67108851, 268435442, 1073741809, 4294967280, 17179869167, 68719476718, 274877906925, 1099511627756 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]

Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.

Index entries for linear recurrences with constant coefficients, signature (6,-9,4).

FORMULA

G.f.: (1 - 3*x + 5*x^2)/((1 - 4*x)*(1 - x)^2). - Vincenzo Librandi, Jun 16 2013

a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3). - Vincenzo Librandi, Jun 16 2013

MATHEMATICA

Table[4^n - n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 3 x + 5 x^2) / ((1 - 4 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)

PROG

(Magma) [4^n - n: n in [0..35]]: // Vincenzo Librandi, May 13 2011

(Magma) I:=[1, 3, 14]; [n le 3 select I[n] else 6*Self(n-1)-9*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013

(PARI) a(n)=4^n-n \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. numbers of the form k^n-n: A000325 (k=2), A024024 (k=3), this sequence (k=4), A024050 (k=5), A024063 (k=6), A024076 (k=7), A024089 (k=8), A024102 (k=9), A024115 (k=10), A024128 (k=11), A024141 (k=12).

Cf. A140660 (first differences).

Sequence in context: A131262 A171499 A006502 * A281349 A307268 A237608

Adjacent sequences: A024034 A024035 A024036 * A024038 A024039 A024040

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 7 02:40 EST 2023. Contains 360111 sequences. (Running on oeis4.)