login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024037 a(n) = 4^n - n. 15
1, 3, 14, 61, 252, 1019, 4090, 16377, 65528, 262135, 1048566, 4194293, 16777204, 67108851, 268435442, 1073741809, 4294967280, 17179869167, 68719476718, 274877906925, 1099511627756 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Guo-Niu Han, Enumeration of Standard Puzzles

Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]

Index entries for linear recurrences with constant coefficients, signature (6,-9,4).

FORMULA

G.f.: (1 - 3x + 5*x^2)/((1-4x)*(1-x)^2). - Vincenzo Librandi, Jun 16 2013

a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3). - Vincenzo Librandi, Jun 16 2013

MATHEMATICA

Table[4^n - n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 3 x + 5 x^2) / ((1 - 4 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)

PROG

(MAGMA) [4^n - n: n in [0..35]]: // Vincenzo Librandi, May 13 2011

(MAGMA) I:=[1, 3, 14]; [n le 3 select I[n] else 6*Self(n-1)-9*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013

(PARI) a(n)=4^n-n \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. numbers of the form k^n-n: A000325 (k=2), A024024 (k=3), this sequence (k=4), A024050 (k=5), A024063 (k=6), A024076 (k=7), A024089 (k=8), A024102 (k=9), A024115 (k=10), A024128 (k=11), A024141 (k=12).

Cf. A140660 (first differences).

Sequence in context: A131262 A171499 A006502 * A281349 A307268 A237608

Adjacent sequences:  A024034 A024035 A024036 * A024038 A024039 A024040

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 22:27 EST 2019. Contains 329880 sequences. (Running on oeis4.)