|
|
A024037
|
|
a(n) = 4^n - n.
|
|
15
|
|
|
1, 3, 14, 61, 252, 1019, 4090, 16377, 65528, 262135, 1048566, 4194293, 16777204, 67108851, 268435442, 1073741809, 4294967280, 17179869167, 68719476718, 274877906925, 1099511627756
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Index entries for linear recurrences with constant coefficients, signature (6,-9,4).
|
|
FORMULA
|
G.f.: (1 - 3*x + 5*x^2)/((1 - 4*x)*(1 - x)^2). - Vincenzo Librandi, Jun 16 2013
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3). - Vincenzo Librandi, Jun 16 2013
|
|
MATHEMATICA
|
Table[4^n - n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 3 x + 5 x^2) / ((1 - 4 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)
|
|
PROG
|
(Magma) [4^n - n: n in [0..35]]: // Vincenzo Librandi, May 13 2011
(Magma) I:=[1, 3, 14]; [n le 3 select I[n] else 6*Self(n-1)-9*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
(PARI) a(n)=4^n-n \\ Charles R Greathouse IV, Sep 24 2015
|
|
CROSSREFS
|
Cf. numbers of the form k^n-n: A000325 (k=2), A024024 (k=3), this sequence (k=4), A024050 (k=5), A024063 (k=6), A024076 (k=7), A024089 (k=8), A024102 (k=9), A024115 (k=10), A024128 (k=11), A024141 (k=12).
Cf. A140660 (first differences).
Sequence in context: A131262 A171499 A006502 * A281349 A307268 A237608
Adjacent sequences: A024034 A024035 A024036 * A024038 A024039 A024040
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|