login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140660
a(n) = 3*4^n + 1.
8
4, 13, 49, 193, 769, 3073, 12289, 49153, 196609, 786433, 3145729, 12582913, 50331649, 201326593, 805306369, 3221225473, 12884901889, 51539607553, 206158430209, 824633720833, 3298534883329, 13194139533313, 52776558133249
OFFSET
0,1
COMMENTS
An Engel expansion of 4/3 to the base 4 as defined in A181565, with the associated series expansion 4/3 = 4/4 + 4^2/(4*13) + 4^3/(4*13*49) + 4^4/(4*13*49*193) + .... Cf. A199115. - Peter Bala, Oct 29 2013
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
FORMULA
a(n) = A002001(n+1) + 1.
a(n) = 4*a(n-1) - 3.
First differences: a(n+1) - a(n) = A002063(n).
a(n+k) - a(n) = 3*(4^k - 1)*A000302(n) = 9*A002450(k)*A000302(n).
a(n) = A140529(n) - A096045(n).
O.g.f.: (7*x - 4)/((1 - x)*(4*x - 1)). - R. J. Mathar, Jul 14 2008
From G. C. Greubel, Sep 15 2017: (Start)
E.g.f.: 3*exp(4*x) + exp(x).
a(n) = 5*a(n-1) - 4*a(n-2). (End)
MATHEMATICA
LinearRecurrence[{5, -4}, {4, 13}, 50] (* or *) CoefficientList[Series[ (7*x-4)/((1-x)*(4*x-1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 15 2017 *)
PROG
(Magma) [3*4^n+1: n in [0..30] ]; // Vincenzo Librandi, May 23 2011
(PARI) x='x+O('x^50); Vec((7*x-4)/((1-x)*(4*x-1))) \\ G. C. Greubel, Sep 15 2017
CROSSREFS
Sequence in context: A149451 A376803 A149452 * A149453 A149454 A101125
KEYWORD
nonn
AUTHOR
Paul Curtz, Jul 10 2008
EXTENSIONS
Edited and extended R. J. Mathar, Jul 14 2008
STATUS
approved