The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140660 a(n) = 3*4^n + 1. 8
 4, 13, 49, 193, 769, 3073, 12289, 49153, 196609, 786433, 3145729, 12582913, 50331649, 201326593, 805306369, 3221225473, 12884901889, 51539607553, 206158430209, 824633720833, 3298534883329, 13194139533313, 52776558133249 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS An Engel expansion of 4/3 to the base 4 as defined in A181565, with the associated series expansion 4/3 = 4/4 + 4^2/(4*13) + 4^3/(4*13*49) + 4^4/(4*13*49*193) + .... Cf. A199115. - Peter Bala, Oct 29 2013 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Guo-Niu Han, Enumeration of Standard Puzzles Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy] Index entries for linear recurrences with constant coefficients, signature (5,-4). FORMULA a(n) = A002001(n+1) + 1. a(n) = 4*a(n-1) - 3. First differences: a(n+1) - a(n)= A002063(n). a(n+k) - a(n)= 3*(4^k-1)*A000302(n) = 9*A002450(k)*A000302(n). a(n) = A140529(n) - A096045(n). O.g.f.: (7*x-4)/((1-x)*(4*x-1)). - R. J. Mathar, Jul 14 2008 From G. C. Greubel, Sep 15 2017: (Start) E.g.f.: 3*exp(4*x) + exp(x). a(n) = 5*a(n-1) - 4*a(n-2). (End) MATHEMATICA LinearRecurrence[{5, -4}, {4, 13}, 50] (* or *) CoefficientList[Series[ (7*x-4)/((1-x)*(4*x-1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 15 2017 *) PROG (MAGMA) [3*4^n+1: n in [0..30] ]; // Vincenzo Librandi, May 23 2011 (PARI) x='x+O('x^50); Vec((7*x-4)/((1-x)*(4*x-1))) \\ G. C. Greubel, Sep 15 2017 CROSSREFS Cf. A181565, A199115. Sequence in context: A096971 A149451 A149452 * A149453 A149454 A101125 Adjacent sequences:  A140657 A140658 A140659 * A140661 A140662 A140663 KEYWORD nonn AUTHOR Paul Curtz, Jul 10 2008 EXTENSIONS Edited and extended R. J. Mathar, Jul 14 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 11:11 EST 2020. Contains 331083 sequences. (Running on oeis4.)