|
|
A024040
|
|
a(n) = 4^n - n^4.
|
|
12
|
|
|
1, 3, 0, -17, 0, 399, 2800, 13983, 61440, 255583, 1038576, 4179663, 16756480, 67080303, 268397040, 1073691199, 4294901760, 17179785663, 68719371760, 274877776623, 1099511467776, 4398046316623, 17592185810160, 70368743897823, 281474976378880, 1125899906451999
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (9,-30,50,-45,21,-4).
|
|
FORMULA
|
G.f.: (1-6*x+3*x^2+23*x^3+48*x^4+3*x^5)/((1-4*x)*(1-x)^5).
E.g.f.: exp(4*x)-(x^4+6*x^3+7*x^2+x)*exp(x). - Robert Israel, Dec 29 2014
|
|
MAPLE
|
seq(4^n - n^4, n=0..50); # Robert Israel, Dec 29 2014
|
|
MATHEMATICA
|
lst={}; Do[AppendTo[lst, 4^n-n^4], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)
Table[4^n-n^4, {n, 0, 40}] (* Harvey P. Dale, Nov 10 2019 *)
|
|
PROG
|
(Magma) [4^n-n^4: n in [0..30]]; // Vincenzo Librandi, May 14 2011
|
|
CROSSREFS
|
Cf. A024012, A024026, A058794. - Vladimir Joseph Stephan Orlovsky, Jan 15 2009
Sequence in context: A240244 A036968 A226158 * A357811 A338489 A009759
Adjacent sequences: A024037 A024038 A024039 * A024041 A024042 A024043
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|