login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307268
Partial sums of the Lucas numbers of the form L(3n+2) (A163063).
1
3, 14, 61, 260, 1103, 4674, 19801, 83880, 355323, 1505174, 6376021, 27009260, 114413063, 484661514, 2053059121, 8696898000, 36840651123, 156059502494, 661078661101, 2800374146900, 11862575248703, 50250675141714, 212865275815561, 901711778403960, 3819712389431403
OFFSET
0,1
FORMULA
a(n) = A001076(n+1) + A099919(n+1).
a(n) = Sum_{i=0..n} L(3i+2), L(i) = A000032(i).
a(n) = (L(3*n+4)-1)/2.
From Colin Barker, Apr 02 2019: (Start)
G.f.: (3 - x) / ((1 - x)*(1 - 4*x - x^2)).
a(n) = (-2 + (7-3*sqrt(5))*(2-sqrt(5))^n + (2+sqrt(5))^n*(7+3*sqrt(5))) / 4.
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3) for n > 2.
(End)
EXAMPLE
L(2) + L(5) = 14;
L(2) + L(5) + L(8) = 61;
L(2) + L(5) + L(8) + L(11) = 260.
MATHEMATICA
Table[(LucasL[3*n + 4] - 1)/2, {n, 0, 20}]
LinearRecurrence[{5, -3, -1}, {3, 14, 61}, 30] (* Harvey P. Dale, Aug 10 2022 *)
PROG
(PARI) L(n) = fibonacci(n+1)+fibonacci(n-1);
a(n) = (L(3*n+4)-1)/2; \\ Michel Marcus, Apr 01 2019
(PARI) Vec((3 - x) / ((1 - x)*(1 - 4*x - x^2)) + O(x^25)) \\ Colin Barker, Apr 02 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Rigoberto Florez, Apr 01 2019
STATUS
approved