login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of the Lucas numbers of the form L(3n+2) (A163063).
1

%I #47 Aug 10 2022 20:03:43

%S 3,14,61,260,1103,4674,19801,83880,355323,1505174,6376021,27009260,

%T 114413063,484661514,2053059121,8696898000,36840651123,156059502494,

%U 661078661101,2800374146900,11862575248703,50250675141714,212865275815561,901711778403960,3819712389431403

%N Partial sums of the Lucas numbers of the form L(3n+2) (A163063).

%H Colin Barker, <a href="/A307268/b307268.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-3,-1).

%F a(n) = A001076(n+1) + A099919(n+1).

%F a(n) = Sum_{i=0..n} L(3i+2), L(i) = A000032(i).

%F a(n) = (L(3*n+4)-1)/2.

%F From _Colin Barker_, Apr 02 2019: (Start)

%F G.f.: (3 - x) / ((1 - x)*(1 - 4*x - x^2)).

%F a(n) = (-2 + (7-3*sqrt(5))*(2-sqrt(5))^n + (2+sqrt(5))^n*(7+3*sqrt(5))) / 4.

%F a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3) for n > 2.

%F (End)

%e L(2) + L(5) = 14;

%e L(2) + L(5) + L(8) = 61;

%e L(2) + L(5) + L(8) + L(11) = 260.

%t Table[(LucasL[3*n + 4] - 1)/2, {n, 0, 20}]

%t LinearRecurrence[{5,-3,-1},{3,14,61},30] (* _Harvey P. Dale_, Aug 10 2022 *)

%o (PARI) L(n) = fibonacci(n+1)+fibonacci(n-1);

%o a(n) = (L(3*n+4)-1)/2; \\ _Michel Marcus_, Apr 01 2019

%o (PARI) Vec((3 - x) / ((1 - x)*(1 - 4*x - x^2)) + O(x^25)) \\ _Colin Barker_, Apr 02 2019

%Y Cf. A001076, A014448, A049651, A099919, A163063.

%K nonn,easy

%O 0,1

%A _Rigoberto Florez_, Apr 01 2019