login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*a(n-1) - 8*a(n-2) for n > 1; a(0) = 3, a(1) = 14.
9

%I #53 Aug 31 2023 03:58:41

%S 3,14,60,248,1008,4064,16320,65408,261888,1048064,4193280,16775168,

%T 67104768,268427264,1073725440,4294934528,17179803648,68719345664,

%U 274877644800,1099511103488,4398045462528,17592183947264,70368739983360

%N a(n) = 6*a(n-1) - 8*a(n-2) for n > 1; a(0) = 3, a(1) = 14.

%C Binomial transform of A171498; second binomial transform of A171497; third binomial transform of A010703.

%C Related to sequences A001969 and A000069, sum of each group with exponent 1. - _Eric Desbiaux_, Jul 24 2013

%C a(n) in base 2 is n+2 1s followed by n 0s. - _Hussam al-Homsi_, Oct 12 2021

%H Vincenzo Librandi, <a href="/A171499/b171499.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-8).

%F a(n) = 4*4^n - 2^n = 2^n * (2^(n+2) - 1).

%F G.f.: (3-4*x)/((1-2*x)*(1-4*x)).

%F a(n) = 4*a(n-1) + 2^n for n > 0. - _Vincenzo Librandi_, Jul 18 2011

%F a(n) = A171476(n+1)/2. - _Hussam al-Homsi_, Jun 06 2021

%F E.g.f.: 4*exp(4*x) - exp(2*x). - _G. C. Greubel_, Aug 31 2023

%t (* This program shows how A171499 arises from the Vandermonde determinant of (1,2,4,...,2^(n-1)). *)

%t f[j_]:= 2^j - 1; z = 15;

%t v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]

%t d[n_]:= Product[(i-1)!, {i,n}]

%t Table[v[n], {n,z}] (* A203303 *)

%t Table[v[n+1]/v[n], {n,z}] (* A002884 *)

%t Table[v[n]*v[n+2]/(2*v[n+1])^2, {n,z}] (* A171499 *)

%t (* _Clark Kimberling_, Jan 02 2011 *)

%t LinearRecurrence[{6,-8},{3,14},30] (* _Harvey P. Dale_, Sep 05 2021 *)

%o (PARI) {m=23; v=concat([3, 14], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v}

%o (Magma) [4*4^n-2^n: n in [0..30]]; // _Vincenzo Librandi_, Jul 18 2011

%o (SageMath) [4^(n+1) -2^n for n in range(31)] # _G. C. Greubel_, Aug 31 2023

%Y Cf. A010703, A171472, A171473, A171476, A171497, A171498.

%K nonn,easy

%O 0,1

%A _Klaus Brockhaus_, Dec 10 2009