The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203303 Vandermonde determinant of the first n terms of (1,2,4,8,16,...). 6
 1, 1, 6, 1008, 20321280, 203199794380800, 4096245678214226116608000, 671169825411994707343327912777482240000, 3589459026274030507466469204160461571257625328222208000000, 2511229721141086754031154605327661795863172723306019839389105937236728217600000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Each term divides its successor, as in A002884. Indeed, 2*v(n+1)/v(n) divides v(n+2)/v(n+1), as in A171499. LINKS Robert Israel, Table of n, a(n) for n = 1..22 Daniel M. Kane, Carlo Sanna, and Jeffrey Shallit, Waring's theorem for binary powers, arXiv:1801.04483 [math.NT], Jan 13 2018. FORMULA a(n) = Product_{0 <= i < j <= n-1} (2^j - 2^i) = 2^(n*(n-1)*(n-2)/6) * Product_{1<=k<=n-1} (2^k-1)^(n-k). - Robert Israel, Jan 16 2018 a(n) ~ 1/A335011 * 2^(n*(n-1)*(2*n-1)/6) * QPochhammer(1/2)^n. - Vaclav Kotesovec, May 19 2020 MAPLE with(LinearAlgebra): a:= n-> Determinant(VandermondeMatrix([2^i\$i=0..n-1])): seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017 f:= n -> 2^(n*(n-1)*(n-2)/6)*mul((2^k-1)^(n-k), k=1..n-1): seq(f(n), n=1..12); # Robert Israel, Jan 16 2018 MATHEMATICA f[j_] := 2^(j - 1); z = 15; v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}] Table[v[n], {n, 1, z}] (* A203303 *) Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A002884 *) Table[v[n] v[n + 2]/(2*v[n + 1]^2), {n, 1, z - 1}] (* A171499 *) Table[FactorInteger[v[n]], {n, 1, z - 1}] CROSSREFS Cf. A000079. Sequence in context: A024085 A080474 A079190 * A159865 A004806 A282233 Adjacent sequences: A203300 A203301 A203302 * A203304 A203305 A203306 KEYWORD nonn AUTHOR Clark Kimberling, Jan 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 02:01 EDT 2023. Contains 362992 sequences. (Running on oeis4.)