login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203300
Self-generating triangle based on symmetric functions.
2
1, 1, 1, 1, 2, 1, 1, 4, 5, 2, 1, 12, 49, 78, 40, 1, 180, 11085, 270610, 2094264, 1834560, 1, 4210700, 4952544856489, 1094968722994345590, 11723079808649412379800, 2086231309557403469400000, 2074509324712524510720000
OFFSET
1,5
COMMENTS
Let row n+1 be (c0, c1, c2,...,cn). Then
c0*x^n + c1*x^(n-1) +...+ cn=(x+b0)(x+b1)...(x+bm),
where (b0,b1,b2,...,bm) is row n.
FORMULA
row n+1: f(0,r), f(1,r),...f(n,r), where f(k,r)=(k-th elementary symmetric function), r=(row n).
EXAMPLE
First five rows:
1
1...1
1...2....1
1...4....5....2
1...12...49...78...40
The factorization property is illustrated by
x^2 + 2x + 1 -> (x+1)(x+2)(x+1) = x^3 + 4x^2 + 5x + 2.
MATHEMATICA
s =.; s[1] = {1};
Prepend[Table[s[z] = Table[SymmetricPolynomial
[k, s[z - 1]], {k, 0, z - 1}], {z, 2, 7}], s[1]]
% // TableForm (* A203300 triangle *)
%% // Flatten (* A203300 sequence *)
(* Peter J. C. Moses, Dec 30 2011 *)
CROSSREFS
Cf. A203301.
Sequence in context: A118686 A355540 A102610 * A134172 A208061 A078047
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 31 2011
STATUS
approved