OFFSET
0,5
COMMENTS
Essentially the same as A136457 with rows in reversed order.
Let M be an n X n matrix filled by Bell numbers A000110(j+k-2) with rows and columns j = 1..n, k = 1..n; then its determinant equals unsigned T(n, n). If we use A000110(j+k), the determinant will equal unsigned T(n+1, n). Can we find a general formula for T(n+m, n) based on determinants of matrices and Bell numbers?
FORMULA
EXAMPLE
The triangle begins:
1;
1, -1;
1, -2, 1;
1, -4, 5, -2;
1, -10, 29, -32, 12;
1, -34, 269, -728, 780, -288;
1, -154, 4349, -33008, 88140, -93888, 34560;
1, -874, 115229, -3164288, 23853900, -63554688, 67633920, -24883200;
...
Row 4: x^4 - 10*x^3 + 29*x^2 - 32*x + 12 = (x-0!)*(x-1!)*(x-2!)*(x-3!).
Illustration of T(1 to 5,1) as tree structure:
.
. o o o o o
. o o o o
. o o o o o o
. ooo ooo ooo ooo
. oooo oooo oooo oooo oooo oooo
. 1 +1 = 2 +2 = 4 +2*3 = 10 +6*4 = 34
.
Illustration of T(2 to 4,2) as tree structure:
.
. o o -----o-----
. o o o o
. o o ---o--- ---o---
. o o o o o o
. o o o o o o
. o o o o o o o o o o o o
. 1 +2*2 = 5 +6*4 = 29
.
Illustration of T(3 to 4,3) as tree structure:
. ------------
. oo ---o--- ---o---
. o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o
. 2 +6*5 = 32
PROG
(PARI) T(n, k) = polcoeff(prod(m=0, n-1, (x-m!)), n-k);
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Thomas Scheuerle, Jul 06 2022
STATUS
approved