login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355540
Triangle read by rows. Row n gives the coefficients of Product_{k=0..n} (x - k!) expanded in decreasing powers of x, with row 0 = {1}.
1
1, 1, -1, 1, -2, 1, 1, -4, 5, -2, 1, -10, 29, -32, 12, 1, -34, 269, -728, 780, -288, 1, -154, 4349, -33008, 88140, -93888, 34560, 1, -874, 115229, -3164288, 23853900, -63554688, 67633920, -24883200, 1, -5914, 4520189, -583918448, 15971865420, -120287210688, 320383261440, -340899840000, 125411328000
OFFSET
0,5
COMMENTS
Essentially the same as A136457 with rows in reversed order.
Let M be an n X n matrix filled by Bell numbers A000110(j+k-2) with rows and columns j = 1..n, k = 1..n; then its determinant equals unsigned T(n, n). If we use A000110(j+k), the determinant will equal unsigned T(n+1, n). Can we find a general formula for T(n+m, n) based on determinants of matrices and Bell numbers?
FORMULA
T(n, 0) = 1.
T(n, 1) = -A003422(n).
T(n, 2) = Sum_{m=0..n-1} !m*m!.
T(n, k) = Sum_{m=0..n-1} -T(m, k-1)*m!.
T(n, n) = (-1)^n*A000178(n).
T(n, n-1) = -(-1)^n*A203227(n), for n > 0.
T(n+1, n) = (-1)^n*A000178(n)*A000522(n).
Sum_{m=0..k} T(n, k) = 0, for n > 0.
Sum_{m=0..k} abs(T(n, k)) = A217757(n+1).
EXAMPLE
The triangle begins:
1;
1, -1;
1, -2, 1;
1, -4, 5, -2;
1, -10, 29, -32, 12;
1, -34, 269, -728, 780, -288;
1, -154, 4349, -33008, 88140, -93888, 34560;
1, -874, 115229, -3164288, 23853900, -63554688, 67633920, -24883200;
...
Row 4: x^4 - 10*x^3 + 29*x^2 - 32*x + 12 = (x-0!)*(x-1!)*(x-2!)*(x-3!).
Illustration of T(1 to 5,1) as tree structure:
.
. o o o o o
. o o o o
. o o o o o o
. ooo ooo ooo ooo
. oooo oooo oooo oooo oooo oooo
. 1 +1 = 2 +2 = 4 +2*3 = 10 +6*4 = 34
.
Illustration of T(2 to 4,2) as tree structure:
.
. o o -----o-----
. o o o o
. o o ---o--- ---o---
. o o o o o o
. o o o o o o
. o o o o o o o o o o o o
. 1 +2*2 = 5 +6*4 = 29
.
Illustration of T(3 to 4,3) as tree structure:
. ------------
. oo ---o--- ---o---
. o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o
. 2 +6*5 = 32
PROG
(PARI) T(n, k) = polcoeff(prod(m=0, n-1, (x-m!)), n-k);
CROSSREFS
Cf. A008276 (The Stirling numbers of the first kind in reverse order).
Cf. A039758 (Coefficients for polynomials with roots in odd numbers).
Cf. A349226 (Coefficients for polynomials with roots in x^x).
Sequence in context: A198895 A355635 A118686 * A102610 A203300 A134172
KEYWORD
sign,tabl
AUTHOR
Thomas Scheuerle, Jul 06 2022
STATUS
approved