OFFSET
0,5
COMMENTS
Let M be an n X n matrix filled by binomial(i*j, i) with rows and columns j = 1..n, k = 1..n; then its determinant equals unsigned T(n, n). Can we find a general formula for T(n+m, n) based on determinants of matrices and binomials?
FORMULA
EXAMPLE
The triangle begins:
1;
1, -1;
1, -2, 1;
1, -6, 9, -4;
1, -33, 171, -247, 108;
1, -289, 8619, -44023, 63340, -27648;
1, -3413, 911744, -26978398, 137635215, -197965148, 86400000;
...
Row 4: x^4-33*x^3+171*x^2-247*x+108 = (x-1)*(x-1^1)*(x-2^2)*(x-3^3).
PROG
(PARI) T(n, k) = polcoeff(prod(m=0, n-1, (x-m^m)), n-k);
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Thomas Scheuerle, Jul 07 2022
STATUS
approved