login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144089
T(n,k) is the number of partial bijections (or subpermutations) of an n-element set of height k (height(alpha) = |Im(alpha)|) and without fixed points.
1
1, 1, 0, 1, 2, 1, 1, 6, 9, 2, 1, 12, 42, 44, 9, 1, 20, 130, 320, 265, 44, 1, 30, 315, 1420, 2715, 1854, 265, 1, 42, 651, 4690, 16275, 25494, 14833, 1854, 1, 56, 1204, 12712, 70070, 198184, 263284, 133496, 14833, 1, 72, 2052, 29904, 240534, 1076544, 2573508
OFFSET
0,5
COMMENTS
Rows also give coefficients of the matching-generating polynomial of the n-crown graph. - Eric W. Weisstein May 19 2017
LINKS
A. Laradji and A. Umar, Combinatorial results for the symmetric inverse semigroup, Semigroup Forum 75, (2007), 221-236.
Eric Weisstein's World of Mathematics, Crown Graph
Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
FORMULA
T(n,k) = (n!/(n-k)!)*Sum_{m=0..k}(-1^m/m!)*binomial(n-m,k-m).
T(n,n-1) = A000166(n+1) and T(n,n) = A000166(n).
E.g.f.: exp(log(1/(1-y*x))-y*x)*exp(x/(1 - y*x)). - Geoffrey Critzer, Feb 18 2022
EXAMPLE
T(3,2) = 9 because there are exactly 9 partial bijections (on a 3-element set) without fixed points and of height 2, namely: (1,2)->(2,1), (1,2)->(2,3), (1,2)->(3,1), (1,3)->(2,1), (1,3)->(3,1), (1,3)->(3,2), (2,3)->(1,2), (2,3)->(3,1), (2,3)->(3,2),- the mappings are coordinate-wise.
Triangle starts:
1;
1, 0;
1, 2, 1;
1, 6, 9, 2;
1, 12, 42, 44, 9;
1, 20, 130, 320, 265, 44;
MATHEMATICA
t[n_, k_] := n!^2*Hypergeometric1F1[-k, -n, -1]/(k!*(n-k)!^2); Flatten[ Table[ t[n, k], {n, 0, 7}, {k, 0, n}]] (* Jean-François Alcover, Oct 13 2011 *)
CoefficientList[Table[x^n n! Sum[(-1)^k/k! LaguerreL[n - k, -1/x], {k, 0, n}], {n, 2, 10}], x] // Flatten (* Eric W. Weisstein, May 19 2017 *)
PROG
(Sage)
def A144089_triangle(dim): # computes rows in reversed order
M = matrix(ZZ, dim, dim)
for n in (0..dim-1): M[n, n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n, k] = M[n-1, k-1]+(2*k)*M[n-1, k]+(k+1)^2*M[n-1, k+1]
return M
A144089_triangle(9) # Peter Luschny, Sep 19 2012
CROSSREFS
Row sums give A144085.
Cf. A000166.
Sequence in context: A137376 A039761 A196073 * A172107 A349226 A165891
KEYWORD
nice,nonn,tabl
AUTHOR
Abdullahi Umar, Sep 11 2008
STATUS
approved