login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144086
Number of partial bijections (or subpermutations) of an n-element set with exactly 1 fixed point.
3
0, 1, 2, 12, 72, 540, 4680, 46200, 510720, 6244560, 83613600, 1216131840, 19084222080, 321271030080, 5773503415680, 110288062684800, 2231100039168000, 47640952315756800, 1070630750168179200, 25255541547460224000, 623884298434645248000, 16104652019138319436800
OFFSET
0,3
LINKS
A. Laradji and A. Umar, Combinatorial results for the symmetric inverse semigroup, Semigroup Forum 75, (2007), 221-236.
FORMULA
a(n) = n*A144085(n-1).
E.g.f.: (x^k/k!)*exp(x^2/(1-x))/(1-x) where k=1. - Joerg Arndt, Jul 11 2011
a(n) = n!*Sum_{m=0..n-1} (-1^m/m!)*Sum_{j=0..n-m} C(n-m)/j!;
(n-1)*a(n) = n*(2*n-3)*a(n-1) - n*(n-1)*(n-4)*a(n-2) - n*(n-1)*(n-2)*a(n-3), a(1)=1 and a(n)=0 if n < 1.
a(n) ~ n^(n+1/4) * exp(2*sqrt(n)-n-3/2) / sqrt(2) * (1 + 31/(48*sqrt(n))). - Vaclav Kotesovec, Feb 24 2014
a(n) = n! * Sum_{k=0..n-1} binomial(k,n-1-k)/(n-1-k)!. - Seiichi Manyama, Aug 06 2024
EXAMPLE
a(3) = 12 because there are exactly 12 partial bijections (on a 3-element set) with exactly 1 fixed point, namely: (1)->(1), (2)->(2), (3)->(3), (1,2)->(1,3), (1,2)->(3,2), (1,3)->(1,2), (1,3)->(2,3), (2,3)->(2,1), (2,3)->(1,3), (1,2,3)->(1,3,2), (1,2,3)->(3,2,1), (1,2,3)->(2,1,3) - the mappings are coordinate-wise.
MATHEMATICA
CoefficientList[Series[x*E^(x^2/(1-x))/(1-x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 24 2014 *)
PROG
(PARI) x='x+O('x^66); /* that many terms */
k=1; egf=x^k/k!*exp(x^2/(1-x))/(1-x);
Vec(serlaplace(egf)) /* show terms, starting with 1 */
/* Joerg Arndt, Jul 11 2011 */
CROSSREFS
Column k=1 of A144088.
Cf. A144085.
Sequence in context: A052833 A277490 A296975 * A358064 A348767 A335786
KEYWORD
nonn
AUTHOR
Abdullahi Umar, Sep 10 2008, Sep 15 2008
STATUS
approved