login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144088
T(n,k) is the number of partial bijections (or subpermutations) of an n-element set with exactly k fixed points.
4
1, 1, 1, 4, 2, 1, 18, 12, 3, 1, 108, 72, 24, 4, 1, 780, 540, 180, 40, 5, 1, 6600, 4680, 1620, 360, 60, 6, 1, 63840, 46200, 16380, 3780, 630, 84, 7, 1, 693840, 510720, 184800, 43680, 7560, 1008, 112, 8, 1, 8361360, 6244560, 2298240, 554400, 98280, 13608, 1512, 144, 9, 1
OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows n = 0..50)
A. Laradji and A. Umar, Combinatorial results for the symmetric inverse semigroup, Semigroup Forum 75, (2007), 221-236.
A. Umar, Some combinatorial problems in the theory of symmetric ..., Algebra Disc. Math. 9 (2010) 115-126.
FORMULA
T(n,k) = C(n,k)*(n-k)! * Sum_{m=0..n-k} (-1^m/m!)*Sum_{j=0..n-m} C(n-m,j)/j!.
(n-k)*T(n,k) = n*(2n-2k-1)*T(n-1,k) - n*(n-1)*(n-k-3)*T(n-2,k) - n*(n-1)*(n-2)*T(n-3,k), T(k,k)=1 and T(n,k)=0 if n < k.
E.g.f.: exp(log(1/(1-x)) - x + y*x)*exp(x/(1-x)). - Geoffrey Critzer, Nov 29 2021
T(n,k) = (n!/k!) * Sum_{j=0..n-k} binomial(j,n-k-j)/(n-k-j)!. - Seiichi Manyama, Aug 06 2024
EXAMPLE
Triangle begins:
1;
1, 1;
4, 2, 1;
18, 12, 3, 1;
108, 72, 24, 4, 1;
780, 540, 180, 40, 5, 1;
6600, 4680, 1620, 360, 60, 6, 1;
63840, 46200, 16380, 3780, 630, 84, 7, 1;
...
T(3,1) = 12 because there are exactly 12 partial bijections (on a 3-element set) with exactly 1 fixed point, namely: (1)->(1), (2)->(2), (3)->(3), (1,2)->(1,3), (1,2)->(3,2), (1,3)->(1,2), (1,3)->(2,3), (2,3)->(2,1), (2,3)->(1,3), (1,2,3)->(1,3,2), (1,2,3)->(3,2,1), (1,2,3)->(2,1,3) -- the mappings are coordinate-wise.
MATHEMATICA
max = 7; f[x_, k_] := (x^k/k!)*(Exp[x^2/(1-x)]/(1-x)); t[n_, k_] := n!*SeriesCoefficient[ Series[ f[x, k], {x, 0, max}], n]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]](* Jean-François Alcover, Mar 12 2012, from e.g.f. by Joerg Arndt *)
PROG
(PARI)
T(n) = {my(egf=exp(log(1/(1-x) + O(x*x^n)) - x + y*x + x/(1-x))); Vec([Vecrev(p) | p<-Vec(serlaplace(egf))])}
{ my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Nov 29 2021
CROSSREFS
T(n, 0) = A144085, T(n, 1) = A144086, T(n, 2) = A144087.
Row sums give A002720.
Sequence in context: A264535 A256039 A152391 * A039948 A111536 A111559
KEYWORD
nice,nonn,tabl
AUTHOR
Abdullahi Umar, Sep 11 2008, Sep 16 2008
EXTENSIONS
Terms a(36) and beyond from Andrew Howroyd, Nov 29 2021
STATUS
approved