login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152391 Triangle T, read by rows, where the matrix square T^2 results in shifting T right one column to drop the secondary diagonal. 8
1, 1, 1, 4, 2, 1, 18, 6, 3, 1, 96, 28, 8, 4, 1, 580, 150, 40, 10, 5, 1, 3852, 930, 216, 54, 12, 6, 1, 27678, 6286, 1386, 294, 70, 14, 7, 1, 212224, 46120, 9552, 1960, 384, 88, 16, 8, 1, 1722312, 359946, 71820, 13770, 2664, 486, 108, 18, 9, 1, 14685140, 2973650, 571440, 106290, 19060, 3510, 600, 130, 20, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
FORMULA
T(n, k) = Sum_{j=k+1..n} T(n,j) * T(j,k+1) for n > k+1 >= 1 with T(n+1,n)=n+1 and T(n,n)=1 for n >= 0.
EXAMPLE
Triangle T begins:
1;
1, 1;
4, 2, 1;
18, 6, 3, 1;
96, 28, 8, 4, 1;
580, 150, 40, 10, 5, 1;
3852, 930, 216, 54, 12, 6, 1;
27678, 6286, 1386, 294, 70, 14, 7, 1;
212224, 46120, 9552, 1960, 384, 88, 16, 8, 1;
1722312, 359946, 71820, 13770, 2664, 486, 108, 18, 9, 1;
14685140, 2973650, 571440, 106290, 19060, 3510, 600, 130, 20, 10, 1; ...
Illustrate recurrence by products of row and column vectors:
T(4,1) = [8,4,1]*[1,3,8]~ = 8*1 + 4*3 + 1*8 = 28;
T(6,0) = [930,216,54,12,6,1]*[1,2,6,28,150,930]~ = 3852;
T(7,0) = [6286,1386,294,70,14,7,1]*[1,2,6,28,150,930,6286]~ = 27678.
T(8,1) = [9552,1960,384,88,16,8,1]*[1,3,8,40,216,1386,9552]~ = 46120.
T(9,3) = [2664,486,108,18,9,1]*[1,5,12,70,384,2664]~ = 13770.
Matrix square T^2 begins:
1;
2, 1;
10, 4, 1;
54, 18, 6, 1;
324, 96, 28, 8, 1;
2130, 580, 150, 40, 10, 1;
15102, 3852, 930, 216, 54, 12, 1;
114282, 27678, 6286, 1386, 294, 70, 14, 1; ...
which equals T shifted right one column with the secondary diagonal dropped.
PROG
(PARI) {T(n, k) = if(n==k, 1, if(n==k+1, n, sum(j=k+1, n, T(n, j)*T(j, k+1) )))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Build an N X N Matrix (informal) */
{M = matrix(N, N, n, k, if(n==k, 1, if(n==k+1, n)) ); }
{T(n, k) = M[n+1, k+1] = if(n==k, 1, if(n==k+1, n, sum(j=k+1, n, T(n, j) * M[j+1, k+2] )))}
for(n=0, N, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Jan 13 2016
CROSSREFS
Cf. columns: A152392, A152393, A152394; A152395.
Cf. A109152.
Sequence in context: A269736 A264535 A256039 * A144088 A039948 A111536
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 11 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 06:27 EST 2023. Contains 367662 sequences. (Running on oeis4.)