OFFSET
0,3
LINKS
G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
FORMULA
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1/x)*(1-x)^n*(1+x)^(n+2)*( Sum_{j >= 0} j^(n+1)*x^j ).
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1/x)*(1+x)^n * (1-x)^(n+2)*PolyLog(-n-1, x).
T(n, n-k) = T(n, k). - G. C. Greubel, Mar 09 2022
EXAMPLE
Irregular triangle begins as:
1;
1, 2, 1;
1, 6, 10, 6, 1;
1, 14, 47, 68, 47, 14, 1;
1, 30, 176, 450, 606, 450, 176, 30, 1;
1, 62, 597, 2392, 5162, 6612, 5162, 2392, 597, 62, 1;
1, 126, 1926, 11382, 35967, 69132, 85492, 69132, 35967, 11382, 1926, 126, 1;
MATHEMATICA
p[n_, x_]:= p[n, x]= (1/x)*(1+x)^n*(1-x)^(n+2)*PolyLog[-n-1, x];
Table[CoefficientList[p[n, x], x], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 09 2022 *)
PROG
(Sage)
def p(n, x): return (1/x)*(1+x)^n*(1-x)^(n+2)*polylog(-n-1, x)
def T(n, k): return ( p(n, x) ).series(x, 2*n+1).list()[k]
flatten([[T(n, k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2022
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Sep 29 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 09 2022
STATUS
approved