login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165889
Irregular triangle T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1-x)^(2*n+4)*( Sum_{j >= 0} j^(n+1)*x^j )^2/x^2, read by rows.
4
1, 1, 2, 1, 1, 8, 18, 8, 1, 1, 22, 143, 244, 143, 22, 1, 1, 52, 808, 3484, 5710, 3484, 808, 52, 1, 1, 114, 3853, 35032, 125746, 188908, 125746, 35032, 3853, 114, 1, 1, 240, 16782, 290672, 2000703, 6040992, 8702820, 6040992, 2000703, 290672, 16782, 240, 1
OFFSET
0,3
FORMULA
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1-x)^(2*n+4)*( Sum_{j >= 0} j^(n+1)*x^j )^2/x^2.
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1-x)^(2*n+4)*( PolyLog(-n-1, x)/x)^2.
T(n, n-k) = T(n, k). - G. C. Greubel, Mar 09 2022
EXAMPLE
Irregular triangle begins as:
1;
1, 2, 1;
1, 8, 18, 8, 1;
1, 22, 143, 244, 143, 22, 1;
1, 52, 808, 3484, 5710, 3484, 808, 52, 1;
1, 114, 3853, 35032, 125746, 188908, 125746, 35032, 3853, 114, 1;
MATHEMATICA
p[n_, x_]:= p[n, x]= (1/x^2)*(1-x)^(2*n+4)*Sum[k^(n+1)*x^k, {k, 0, Infinity}]^2;
Table[CoefficientList[p[n, x], x], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 09 2022 *)
PROG
(Sage)
def p(n, x): return (1/x^2)*(1-x)^(2*n+4)*sum( j^(n+1)*x^j for j in (0..2*n+4) )^2
def T(n, k): return ( p(n, x) ).series(x, 2*n+1).list()[k]
flatten([[T(n, k) for k in (0..2*n)] for n in (0..12)])
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Sep 29 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 09 2022
STATUS
approved