This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165883 Polynomial coefficient sequence from the infinite sum: p(x,n)=(1 - x)^(2*n + 3)*Sum[(2*k + 1)^n*x^ k, {k, 0, Infinity}]*Sum[k^(n + 1)*x^k, {k, 0, Infinity}]/x 0
 1, 1, 2, 1, 1, 10, 26, 10, 1, 1, 34, 287, 508, 287, 34, 1, 1, 102, 2272, 11098, 19134, 11098, 2272, 102, 1, 1, 294, 15493, 169432, 675706, 1042948, 675706, 169432, 15493, 294, 1, 1, 842, 98374, 2151026, 17138559, 55643460, 82178676, 55643460, 17138559 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The sequence is a product of the Eulerian numbers A008292 and the MacMahon numbers A060187. The row sums are: {1, 4, 48, 1152, 46080, 2764800, 232243200, 26011238400, 3745618329600, 674211299328000, 148326485852160000,...} LINKS FORMULA Alternative form is: p(x,n)=2^n*(1-x)^(2*n+3)*LerchPhi[x,-n,1/2]*PolyLog[ -1-n,x]/x EXAMPLE {1}, {1, 2, 1}, {1, 10, 26, 10, 1}, {1, 34, 287, 508, 287, 34, 1}, {1, 102, 2272, 11098, 19134, 11098, 2272, 102, 1}, {1, 294, 15493, 169432, 675706, 1042948, 675706, 169432, 15493, 294, 1} MATHEMATICA Clear[p, x, n, m] p[x_, n_] = (1 - x)^(2*n + 3)* Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}]*Sum[k^(n + 1)*x^ k, {k, 0, Infinity}]/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%] Table[Apply[Plus, CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}] CROSSREFS Sequence in context: A298158 A154989 A064307 * A260950 A110905 A205447 Adjacent sequences:  A165880 A165881 A165882 * A165884 A165885 A165886 KEYWORD nonn,uned,tabf AUTHOR Roger L. Bagula, Sep 29 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 17 14:12 EST 2018. Contains 318201 sequences. (Running on oeis4.)