login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158782
Irregular triangle of coefficients of p(n, x) = (1 - x^2)^(n+1)*Sum_{j >= 0} (4*j+ 1)^n*x^(2*j), read by rows.
4
1, 1, 0, 3, 1, 0, 22, 0, 9, 1, 0, 121, 0, 235, 0, 27, 1, 0, 620, 0, 3446, 0, 1996, 0, 81, 1, 0, 3119, 0, 40314, 0, 63854, 0, 15349, 0, 243, 1, 0, 15618, 0, 422087, 0, 1434812, 0, 963327, 0, 112546, 0, 729, 1, 0, 78117, 0, 4157997, 0, 26672209, 0, 37898739, 0, 12960063, 0, 806047, 0, 2187
OFFSET
0,4
COMMENTS
Define the series q(x, n) = (1 - x^2)^(n+1)*Sum_{j >= 1} (4*k+1)^n*x^(2*k) then the sum r(x, n) = p(x, n) + q(x, n) is symmetrical and gives r(x, n) =(x+1)^(2*n+1)*A060187(x, n).
FORMULA
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1 - x^2)^(n+1)*Sum_{j >= 0} (4*j+ 1)^n*x^(2*j).
EXAMPLE
The irregular triangle begins as:
1;
1, 0, 3;
1, 0, 22, 0, 9;
1, 0, 121, 0, 235, 0, 27;
1, 0, 620, 0, 3446, 0, 1996, 0, 81;
1, 0, 3119, 0, 40314, 0, 63854, 0, 15349, 0, 243;
1, 0, 15618, 0, 422087, 0, 1434812, 0, 963327, 0, 112546, 0, 729;
MATHEMATICA
p[n_, x_]= (1-x^2)^(n+1)*Sum[(4*k+1)^n*x^(2*k), {k, 0, Infinity}];
Table[FullSimplify[p[n, x]], {n, 0, 12}];
Table[CoefficientList[p[n, x], x], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 08 2022 *)
PROG
(Sage)
def p(n, x): return (1-x^2)^(n+1)*sum( (4*j+1)^n*x^(2*j) for j in (0..n+1) )
def T(n, k): return ( p(n, x) ).series(x, 2*n+1).list()[k]
flatten([[T(n, k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 08 2022
CROSSREFS
Cf. A060187.
Sequence in context: A246049 A316773 A006837 * A187558 A327547 A233293
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Mar 26 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 08 2022
STATUS
approved