login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316773
Triangle read by rows: T(n,m) = Sum_{k=m+1..n} (n-1)!/(k-1)!*binomial(2*n-k-1, n-1)*E(k,m) where E(n,m) is Euler's triangle A173018, T(0,0) = 1, n >= m >= 0.
1
1, 1, 0, 3, 1, 0, 19, 10, 1, 0, 193, 119, 23, 1, 0, 2721, 1806, 466, 46, 1, 0, 49171, 34017, 10262, 1502, 87, 1, 0, 1084483, 770274, 255795, 47020, 4425, 162, 1, 0, 28245729, 20429551, 7235853, 1539939, 193699, 12525, 303, 1, 0, 848456353, 621858526, 230629024, 54314242, 8273758, 755170, 34912, 574, 1, 0
OFFSET
0,4
COMMENTS
T(n,m) is the number of labeled binary trees of size n with m ascents on the left branch.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
Yuriy Shablya, Dmitry Kruchinin, Vladimir Kruchinin, Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application, Mathematics (2020) Vol. 8, No. 6, 962.
FORMULA
E.g.f.: Sum_{n >= m >= 0} T(n, m)/n! * x^n * y^m = E(C(x),y) = (y-1)/(y-exp(C(x)*(y-1))), where E(x,y) is an e.g.f. for Euler's triangle A173018.
T(n,m) = Sum_{k = m+1..n} C(n,k)*E(k,m)*P(n,n-k), T(0,0)=1, where C(n,m) is the transposed Catalan's triangle A033184, E(n,m) is Euler's triangle A173018, and P(n,m) is the number of k-permutations of n A008279.
EXAMPLE
Triangle begins:
--------------------------------------------------------------------------
n\k| 0 1 2 3 4 5 6 7 8 9
------+-------------------------------------------------------------------
0 | 1
1 | 1 0
2 | 3 1 0
3 | 19 10 1 0
4 | 193 119 23 1 0
5 | 2721 1806 466 46 1 0
6 | 49171 34017 10262 1502 87 1 0
7 | 1084483 770274 255795 47020 4425 162 1 0
8 | 28245729 20429551 7235853 1539939 193699 12525 303 1 0
9 | 848456353 621858526 230629024 54314242 8273758 755170 34912 574 1 0
MAPLE
T := (n, m) -> `if`(n=0, 1, add((n-1)!/(k-1)!*binomial(2*n-k-1, n-1)*
combinat:-eulerian1(k, m), k = m+1..n)):
for n from 0 to 6 do seq(T(n, k), k=0..n) od; # Peter Luschny, Sep 04 2020
MATHEMATICA
Table[Boole[n == 0] + Sum[(n - 1)!/(k - 1)!*Binomial[2 n - k - 1, n - 1]*Sum[(-1)^j*(m + 1 - j)^k*Binomial[k + 1, j], {j, 0, m}], {k, m + 1, n}], {n, 0, 8}, {m, 0, n}] // Flatten (* Michael De Vlieger, Sep 04 2020 *)
PROG
(Maxima)
T(n, m):=if m>n then 0 else if n=0 then 1 else sum((n-1)!/(k-1)!*binomial(2*n-k-1, n-1)*sum((-1)^j*(m+1-j)^k*binomial(k+1, j), j, 0, m), k, m+1, n);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Yuriy Shablya, Sep 13 2018
STATUS
approved