OFFSET
0,4
COMMENTS
T(n,m) is the number of labeled binary trees of size n with m ascents on the left branch.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
Yuriy Shablya, Dmitry Kruchinin, Vladimir Kruchinin, Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application, Mathematics (2020) Vol. 8, No. 6, 962.
FORMULA
E.g.f.: Sum_{n >= m >= 0} T(n, m)/n! * x^n * y^m = E(C(x),y) = (y-1)/(y-exp(C(x)*(y-1))), where E(x,y) is an e.g.f. for Euler's triangle A173018.
EXAMPLE
Triangle begins:
--------------------------------------------------------------------------
n\k| 0 1 2 3 4 5 6 7 8 9
------+-------------------------------------------------------------------
0 | 1
1 | 1 0
2 | 3 1 0
3 | 19 10 1 0
4 | 193 119 23 1 0
5 | 2721 1806 466 46 1 0
6 | 49171 34017 10262 1502 87 1 0
7 | 1084483 770274 255795 47020 4425 162 1 0
8 | 28245729 20429551 7235853 1539939 193699 12525 303 1 0
9 | 848456353 621858526 230629024 54314242 8273758 755170 34912 574 1 0
MAPLE
T := (n, m) -> `if`(n=0, 1, add((n-1)!/(k-1)!*binomial(2*n-k-1, n-1)*
combinat:-eulerian1(k, m), k = m+1..n)):
for n from 0 to 6 do seq(T(n, k), k=0..n) od; # Peter Luschny, Sep 04 2020
MATHEMATICA
Table[Boole[n == 0] + Sum[(n - 1)!/(k - 1)!*Binomial[2 n - k - 1, n - 1]*Sum[(-1)^j*(m + 1 - j)^k*Binomial[k + 1, j], {j, 0, m}], {k, m + 1, n}], {n, 0, 8}, {m, 0, n}] // Flatten (* Michael De Vlieger, Sep 04 2020 *)
PROG
(Maxima)
T(n, m):=if m>n then 0 else if n=0 then 1 else sum((n-1)!/(k-1)!*binomial(2*n-k-1, n-1)*sum((-1)^j*(m+1-j)^k*binomial(k+1, j), j, 0, m), k, m+1, n);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Yuriy Shablya, Sep 13 2018
STATUS
approved