login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110518
Riordan array (1, x*c(3x)), c(x) the g.f. of A000108.
6
1, 0, 1, 0, 3, 1, 0, 18, 6, 1, 0, 135, 45, 9, 1, 0, 1134, 378, 81, 12, 1, 0, 10206, 3402, 756, 126, 15, 1, 0, 96228, 32076, 7290, 1296, 180, 18, 1, 0, 938223, 312741, 72171, 13365, 2025, 243, 21, 1, 0, 9382230, 3127410, 729729, 138996, 22275, 2970, 315, 24, 1, 0
OFFSET
0,5
COMMENTS
Row sums are C(3;n), A064063. Inverse is A110517. Diagonal sums are A110525.
FORMULA
Number triangle: T(0,k) = 0^k, T(n,k) = (k/n)*C(2n-k-1, n-k)*3^(n-k), n > 0, k > 0.
T(n,k) = A106566(n,k)*3^(n-k). - Philippe Deléham, Nov 08 2007
Triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 3, 3, 3, 3, 3, 3, 3, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 23 2014
EXAMPLE
Rows begin
1;
0, 1;
0, 3, 1;
0, 18, 6, 1;
0, 135, 45, 9, 1;
0, 1134, 378, 81, 12, 1;
...
Production matrix begins:
0, 1;
0, 3, 1;
0, 9, 3, 1;
0, 27, 9, 3, 1;
0, 81, 27, 9, 3, 1;
0, 243, 81, 27, 9, 3, 1;
... - Philippe Deléham, Sep 23 2014
MATHEMATICA
T[0, 0] := 1; T[0, k_] := 0; T[n_, k_] := (k/n)*3^(n - k)*Binomial[2*n - k - 1, n - k]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 29 2017 *)
PROG
(PARI) concat([1], for(n=1, 10, for(k=0, n, print1((k/n)*3^(n-k)*binomial(2*n-k-1, n-k), ", ")))) \\ G. C. Greubel, Aug 29 2017
CROSSREFS
Sequence in context: A360177 A241981 A147723 * A246049 A316773 A006837
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 24 2005
STATUS
approved