login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110519
Riordan array (1/(1-xc(3x)), xc(3x)/(1-xc(3x))), c(x) the g.f. of A000108.
6
1, 1, 1, 4, 5, 1, 25, 33, 9, 1, 190, 256, 78, 13, 1, 1606, 2186, 703, 139, 17, 1, 14506, 19863, 6591, 1430, 216, 21, 1, 137089, 188449, 63813, 14669, 2501, 309, 25, 1, 1338790, 1845416, 633808, 151532, 27940, 3980, 418, 29, 1, 13403950, 18513822
OFFSET
0,4
COMMENTS
Product of (1, xc(3x)) and (1/(1-x), x/(1-x)) (A110518 and A007318). The binomial transform of the inverse of this triangle has general element (-3)^(n-k)*C(k,n-k), that is, it is the Riordan array (1, x(1-3x)) [A110517]. Row sums are A110520. Diagonal sums are A110521.
FORMULA
Number triangle T(0,k) = 0^k, T(n,k) = Sum_{j=0..n} j*C(2n-j-1, n-j)* C(j, k)3^(n-j)/n, n > 0, k > 0. Deleham triangle Delta(0^n, 3-2*0^n) [see construction in A084938].
EXAMPLE
Rows begin
1;
1, 1;
4, 5, 1;
25, 33, 9, 1;
190, 256, 78, 13, 1;
1606, 2186, 703, 139, 17, 1;
MATHEMATICA
T[0, 0] := 1; T[0, k_] := 0; T[n_, k_] := Sum[j*3^(n - j)*Binomial[2*n - j - 1, n - j]*Binomial[j, k]/n, {j, 0, n}]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten ( G. C. Greubel, Aug 29 2017 *)
PROG
(PARI) concat([1], for(n=1, 10, for(k=0, n, print1(sum(j=0, n, j*binomial(2*n-j-1, n-j)*binomial(j, k)*3^(n-j)/n), ", ")))) \\ G. C. Greubel, Aug 29 2017
CROSSREFS
Sequence in context: A109962 A102230 A147724 * A286796 A286718 A204579
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 24 2005
STATUS
approved