login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109962
Inverse of Riordan array (1/(1-x), x/(1-x)^4), A109960.
2
1, -1, 1, 4, -5, 1, -22, 30, -9, 1, 140, -200, 72, -13, 1, -969, 1425, -570, 130, -17, 1, 7084, -10626, 4554, -1196, 204, -21, 1, -53820, 81900, -36855, 10647, -2142, 294, -25, 1, 420732, -647280, 302064, -93496, 21080, -3472, 400, -29, 1, -3362260, 5217300, -2504304, 816816, -200277, 37485, -5250, 522
OFFSET
0,4
COMMENTS
Riordan array (g,f) where f/(1-f)^4=x and g=1/(1-f). First column is (-1)^n*A002293(n). Diagonal sums are A109963.
LINKS
Paul Drube, Generalized Path Pairs and Fuss-Catalan Triangles, arXiv:2007.01892 [math.CO], 2020. See Figure 4 p. 8 (up to signs).
FORMULA
Number triangle T(n, k)=(-1)^(n-k)*((4k+1)/(3n+k+1))*binomial(4n, n-k).
EXAMPLE
Rows begin
1;
-1,1;
4,-5,1;
-22,30,-9,1;
140,-200,72,-13,1;
-969,1425,-570,130,-17,1;
CROSSREFS
Sequence in context: A210590 A108446 A283263 * A102230 A147724 A110519
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Jul 06 2005
STATUS
approved