login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle of coefficients of p(n, x) = (1 - x^2)^(n+1)*Sum_{j >= 0} (4*j+ 1)^n*x^(2*j), read by rows.
4

%I #8 Mar 09 2022 01:35:34

%S 1,1,0,3,1,0,22,0,9,1,0,121,0,235,0,27,1,0,620,0,3446,0,1996,0,81,1,0,

%T 3119,0,40314,0,63854,0,15349,0,243,1,0,15618,0,422087,0,1434812,0,

%U 963327,0,112546,0,729,1,0,78117,0,4157997,0,26672209,0,37898739,0,12960063,0,806047,0,2187

%N Irregular triangle of coefficients of p(n, x) = (1 - x^2)^(n+1)*Sum_{j >= 0} (4*j+ 1)^n*x^(2*j), read by rows.

%C Define the series q(x, n) = (1 - x^2)^(n+1)*Sum_{j >= 1} (4*k+1)^n*x^(2*k) then the sum r(x, n) = p(x, n) + q(x, n) is symmetrical and gives r(x, n) =(x+1)^(2*n+1)*A060187(x, n).

%H G. C. Greubel, <a href="/A158782/b158782.txt">Rows n = 0..50 of the irregular triangle, flattened</a>

%F T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1 - x^2)^(n+1)*Sum_{j >= 0} (4*j+ 1)^n*x^(2*j).

%e The irregular triangle begins as:

%e 1;

%e 1, 0, 3;

%e 1, 0, 22, 0, 9;

%e 1, 0, 121, 0, 235, 0, 27;

%e 1, 0, 620, 0, 3446, 0, 1996, 0, 81;

%e 1, 0, 3119, 0, 40314, 0, 63854, 0, 15349, 0, 243;

%e 1, 0, 15618, 0, 422087, 0, 1434812, 0, 963327, 0, 112546, 0, 729;

%t p[n_, x_]= (1-x^2)^(n+1)*Sum[(4*k+1)^n*x^(2*k), {k,0,Infinity}];

%t Table[FullSimplify[p[n,x]], {n,0,12}];

%t Table[CoefficientList[p[n,x], x], {n, 0, 12}]//Flatten (* modified by _G. C. Greubel_, Mar 08 2022 *)

%o (Sage)

%o def p(n,x): return (1-x^2)^(n+1)*sum( (4*j+1)^n*x^(2*j) for j in (0..n+1) )

%o def T(n,k): return ( p(n,x) ).series(x, 2*n+1).list()[k]

%o flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # _G. C. Greubel_, Mar 08 2022

%Y Cf. A060187.

%K nonn,tabf

%O 0,4

%A _Roger L. Bagula_, Mar 26 2009

%E Edited by _G. C. Greubel_, Mar 08 2022