Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 10 2022 02:03:02
%S 1,1,2,1,1,6,10,6,1,1,14,47,68,47,14,1,1,30,176,450,606,450,176,30,1,
%T 1,62,597,2392,5162,6612,5162,2392,597,62,1,1,126,1926,11382,35967,
%U 69132,85492,69132,35967,11382,1926,126,1,1,254,6043,50892,223785,600546,1060411,1277096,1060411,600546,223785,50892,6043,254,1
%N Irregular triangle T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1/x)*(1-x)^n*(1+x)^(n+2)*( Sum_{j >= 0} j^(n+1)*x^j ), read by rows.
%H G. C. Greubel, <a href="/A165891/b165891.txt">Rows n = 0..50 of the irregular triangle, flattened</a>
%F T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1/x)*(1-x)^n*(1+x)^(n+2)*( Sum_{j >= 0} j^(n+1)*x^j ).
%F T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1/x)*(1+x)^n * (1-x)^(n+2)*PolyLog(-n-1, x).
%F T(n, n-k) = T(n, k). - _G. C. Greubel_, Mar 09 2022
%e Irregular triangle begins as:
%e 1;
%e 1, 2, 1;
%e 1, 6, 10, 6, 1;
%e 1, 14, 47, 68, 47, 14, 1;
%e 1, 30, 176, 450, 606, 450, 176, 30, 1;
%e 1, 62, 597, 2392, 5162, 6612, 5162, 2392, 597, 62, 1;
%e 1, 126, 1926, 11382, 35967, 69132, 85492, 69132, 35967, 11382, 1926, 126, 1;
%t p[n_, x_]:= p[n, x]= (1/x)*(1+x)^n*(1-x)^(n+2)*PolyLog[-n-1, x];
%t Table[CoefficientList[p[n, x], x], {n,0,12}]//Flatten (* modified by _G. C. Greubel_, Mar 09 2022 *)
%o (Sage)
%o def p(n,x): return (1/x)*(1+x)^n*(1-x)^(n+2)*polylog(-n-1, x)
%o def T(n,k): return ( p(n,x) ).series(x, 2*n+1).list()[k]
%o flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # _G. C. Greubel_, Mar 09 2022
%Y Cf. A158782, A165883, A165889, A165890.
%K nonn,tabf
%O 0,3
%A _Roger L. Bagula_, Sep 29 2009
%E Edited by _G. C. Greubel_, Mar 09 2022