login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136457 Triangle read by rows: coefficients of polynomials defined by recursion p(x,n)=(x-Gamma(n))*p(x,n-1). 0
1, -1, 1, 1, -2, 1, -2, 5, -4, 1, 12, -32, 29, -10, 1, -288, 780, -728, 269, -34, 1, 34560, -93888, 88140, -33008, 4349, -154, 1, -24883200, 67633920, -63554688, 23853900, -3164288, 115229, -874, 1, 125411328000, -340899840000, 320383261440, -120287210688, 15971865420, -583918448, 4520189 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

These are inspired by Cornelius-Schultz matrices.

Row sums are: {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...}

LINKS

Table of n, a(n) for n=1..43.

E. F. Cornelius and Phill Schultz, Sequences Generated by Polynomials, Amer. Math. Monthly, No. 2, 2008.

FORMULA

p(x,0)=1; p(x,1)=x-1; p(x,n)=(x-Gamma(n))*p(x,n-1)

EXAMPLE

Triangle begins:

{1},

{-1, 1},

{1, -2, 1},

{-2, 5, -4, 1},

{12, -32, 29, -10, 1},

{-288, 780, -728, 269, -34, 1},

{34560, -93888, 88140, -33008, 4349, -154, 1}

MATHEMATICA

Clear[p, x, n, a] p[x, 0] = 1; p[x, 1] = x - 1; p[x_, m_] := p[x, n] = (x - Gamma[n])*p[x, n - 1]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]; Table[ExpandAll[p[x, n]], {n, 0, 10}];

CROSSREFS

Sequence in context: A104560 A121435 A137156 * A209133 A078016 A078046

Adjacent sequences:  A136454 A136455 A136456 * A136458 A136459 A136460

KEYWORD

tabl,sign

AUTHOR

Roger L. Bagula, Mar 20 2008

EXTENSIONS

Edited by N. J. A. Sloane, Aug 10 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 1 00:13 EDT 2021. Contains 346377 sequences. (Running on oeis4.)