login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136457
Triangle read by rows: coefficients of polynomials defined by recursion p(x,n)=(x-Gamma(n))*p(x,n-1).
1
1, -1, 1, 1, -2, 1, -2, 5, -4, 1, 12, -32, 29, -10, 1, -288, 780, -728, 269, -34, 1, 34560, -93888, 88140, -33008, 4349, -154, 1, -24883200, 67633920, -63554688, 23853900, -3164288, 115229, -874, 1, 125411328000, -340899840000, 320383261440, -120287210688, 15971865420, -583918448, 4520189
OFFSET
1,5
COMMENTS
These are inspired by Cornelius-Schultz matrices.
Row sums are: {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...}
LINKS
E. F. Cornelius and Phill Schultz, Sequences Generated by Polynomials, Amer. Math. Monthly, No. 2, 2008.
FORMULA
p(x,0)=1; p(x,1)=x-1; p(x,n)=(x-Gamma(n))*p(x,n-1)
EXAMPLE
Triangle begins:
{1},
{-1, 1},
{1, -2, 1},
{-2, 5, -4, 1},
{12, -32, 29, -10, 1},
{-288, 780, -728, 269, -34, 1},
{34560, -93888, 88140, -33008, 4349, -154, 1}
MATHEMATICA
Clear[p, x, n, a] p[x, 0] = 1; p[x, 1] = x - 1; p[x_, m_] := p[x, n] = (x - Gamma[n])*p[x, n - 1]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]; Table[ExpandAll[p[x, n]], {n, 0, 10}];
CROSSREFS
Sequence in context: A104560 A121435 A137156 * A375048 A209133 A078016
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula, Mar 20 2008
EXTENSIONS
Edited by N. J. A. Sloane, Aug 10 2008
STATUS
approved