The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136456 Characteristic polynomials of the Inverse Beta function based matrices as a triangle of Integer coefficients: (lower triangular form: Cornelius-Schultz form) n*IM(i,j)=Inverse(if[i>=,1/Gamma(i,j),0));i.j>=n. 0
 1, 0, 1, 1, -2, 1, 6, -13, 8, -1, 720, -1566, 973, -128, 1, 3628800, -7893360, 4905486, -646093, 5168, -1, 1316818944000, -2864346105600, 1780110653040, -234459133326, 1876009933, -368048, 1, 52563198423859200000, -114335531944833024000, 71056323779613177600, -9358860113257929840 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Based on: Beta[n,m]=Gamma[n]*Gamma[m]/Gamma[n+m]=Integate[x^n&(1-x)^m,{x,0,1}]; f[x,n]=x^n/Gamma[n] g[x,n]=(1-x)^n/Gamma[n] Integral: Matrix[n,m]=Integrate[f[x,n]*g[x,m],{x,0,1}]=1/Gamma[n,m] IM[n]=n*Inverse[Matrix[n,m]] These matrices are made to be like the transorthogonal or simplex coding: -1/(2^n-1) 1/Gamma[n+m] is mostly less than that. These results get really big really fast. The Cornelius-Schultz lower triangular form makes them smaller and the row sums are mostly zero. The row sums are {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. REFERENCES Weisstein, Eric W. "Beta Function." http : // mathworld.wolfram.com/BetaFunction.html LINKS FORMULA M(i,j)=if[i>=,1/Gamma(i,j),0);i,j<=n IM(i,j)=Inverse(M(i,j)) EXAMPLE {1}, {0, 1}, {1, -2, 1}, {6, -13, 8, -1}, {720, -1566, 973, -128, 1}, {3628800, -7893360, 4905486, -646093, 5168, -1} MATHEMATICA M[w_] := Table[Table[If[n - m == 0 && n == 0 && m == 0, 1, If[n >= m, 1/Gamma[n + m], 0]], {n, 0, w}], {m, 0, w}]; TableForm[Table[M[w], {w, 0, 5}]; ] TableForm[Table[Inverse[M[w]], {w, 0, 5}]]; IM[w_] := Inverse[M[w]]; Join[{1, x}, Table[CharacteristicPolynomial[IM[n], x], {n, 1, 10}]]; a = Join[{{1}, {0, 1}}, Table[CoefficientList[CharacteristicPolynomial[IM[ n], x], x], {n, 1, 10}]]; Flatten[a] Join[{1, 1}, Table[Apply[Plus, CoefficientList[ CharacteristicPolynomial[IM[n], x], x]], {n, 1, 10}]]; CROSSREFS Sequence in context: A128534 A002562 A218492 * A123968 A282329 A343806 Adjacent sequences:  A136453 A136454 A136455 * A136457 A136458 A136459 KEYWORD uned,tabl,sign AUTHOR Roger L. Bagula, Mar 20 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 10:48 EDT 2021. Contains 347714 sequences. (Running on oeis4.)