login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136456
Characteristic polynomials of the Inverse Beta function based matrices as a triangle of Integer coefficients: (lower triangular form: Cornelius-Schultz form) n*IM(i,j)=Inverse(if[i>=,1/Gamma(i,j),0));i.j>=n.
0
1, 0, 1, 1, -2, 1, 6, -13, 8, -1, 720, -1566, 973, -128, 1, 3628800, -7893360, 4905486, -646093, 5168, -1, 1316818944000, -2864346105600, 1780110653040, -234459133326, 1876009933, -368048, 1, 52563198423859200000, -114335531944833024000, 71056323779613177600, -9358860113257929840
OFFSET
1,5
COMMENTS
Based on:
Beta[n,m]=Gamma[n]*Gamma[m]/Gamma[n+m]=Integate[x^n&(1-x)^m,{x,0,1}];
f[x,n]=x^n/Gamma[n]
g[x,n]=(1-x)^n/Gamma[n]
Integral:
Matrix[n,m]=Integrate[f[x,n]*g[x,m],{x,0,1}]=1/Gamma[n,m]
IM[n]=n*Inverse[Matrix[n,m]]
These matrices are made to be like the transorthogonal or simplex coding:
-1/(2^n-1)
1/Gamma[n+m] is mostly less than that.
These results get really big really fast.
The Cornelius-Schultz lower triangular form makes them smaller and the row sums are mostly zero.
The row sums are {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}.
LINKS
FORMULA
M(i,j)=if[i>=,1/Gamma(i,j),0);i,j<=n IM(i,j)=Inverse(M(i,j))
EXAMPLE
{1},
{0, 1},
{1, -2, 1},
{6, -13, 8, -1},
{720, -1566, 973, -128, 1},
{3628800, -7893360, 4905486, -646093, 5168, -1}
MATHEMATICA
M[w_] := Table[Table[If[n - m == 0 && n == 0 && m == 0, 1, If[n >= m, 1/Gamma[n + m], 0]], {n, 0, w}], {m, 0, w}]; TableForm[Table[M[w], {w, 0, 5}]; ] TableForm[Table[Inverse[M[w]], {w, 0, 5}]]; IM[w_] := Inverse[M[w]]; Join[{1, x}, Table[CharacteristicPolynomial[IM[n], x], {n, 1, 10}]]; a = Join[{{1}, {0, 1}}, Table[CoefficientList[CharacteristicPolynomial[IM[ n], x], x], {n, 1, 10}]]; Flatten[a] Join[{1, 1}, Table[Apply[Plus, CoefficientList[ CharacteristicPolynomial[IM[n], x], x]], {n, 1, 10}]];
CROSSREFS
Sequence in context: A128534 A002562 A218492 * A123968 A282329 A343806
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Mar 20 2008
STATUS
approved