login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136458
Triangle of coefficients of the characteristic polynomial of a bi-orthogonal n X n matrix: h(i,j) = If[i - j == 0, 1, If[Abs[i - j] - n/2 == 0, -1, 0]];i,j<=n; example n=4: {{1, 0, -1, 0}, {0, 1, 0, -1}, {-1, 0, 1, 0}, {0, -1, 0, 1}}.
0
1, 1, -1, 0, -2, 1, 1, -3, 3, -1, 0, 0, 4, -4, 1, 1, -5, 10, -10, 5, -1, 0, 0, 0, -8, 12, -6, 1, 1, -7, 21, -35, 35, -21, 7, -1, 0, 0, 0, 0, 16, -32, 24, -8, 1, 1, -9, 36, -84, 126, -126, 84, -36, 9, -1, 0, 0, 0, 0, 0, -32, 80, -80, 40, -10, 1
OFFSET
1,5
COMMENTS
Row sums are: {1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1}.
These matrices are related to binary digital signal processing.
REFERENCES
http://www.ee.cityu.edu.hk/~eekwwong/ee40214/chapter3.pdf (dead link)
FORMULA
If[i - j == 0, 1, If[Abs[i - j] - n/2 == 0, -1, 0]],
EXAMPLE
{1},
{1, -1},
{0, -2, 1},
{1, -3, 3, -1},
{0, 0, 4, -4, 1},
{1, -5, 10, -10, 5, -1},
{0, 0, 0, -8, 12, -6, 1},
{1, -7, 21, -35, 35, -21, 7, -1},
{0, 0, 0, 0, 16, -32, 24, -8, 1},
{1, -9, 36, -84, 126, -126, 84, -36, 9, -1},
{0, 0, 0, 0, 0, -32, 80, -80, 40, -10, 1}
MATHEMATICA
Clear[B] B[n_] := Table[Table[If[i -j == 0, 1, If[Abs[i - j] - n/2 == 0, -1, 0]], {i, 1, n}], {j, 1, n}]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[B[n], x], x], {n, 1, 10}]]; Flatten[a] Join[{1}, Table[Apply[Plus, CoefficientList[CharacteristicPolynomial[B[n], x], x]], {n, 1, 10}]];
CROSSREFS
Sequence in context: A108482 A124750 A275865 * A048805 A204015 A370140
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Mar 20 2008
STATUS
approved